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Abstract

This article surveys the most important developments in volatility forecast comparison and model
selection. We review a number of evaluation methods and testing procedures for predictive ac-
curacy based on statistical loss functions. We also review recent contributions on the admissible
form of loss functions ensuring consistency of the ordering when forecast performances are eval-
uated with respect to an imperfect volatility proxy. The techniques discussed are illustrated using

artificial and EUR/USD exchange rate data.
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Traditional regression tools have shown their limitation in the modelling of financial time-series
(say y:). Assuming that only the conditional mean could be changing with covariates while the
variance remains constant over time often revealed to be an unrealistic assumption in practice.
Indeed, it is now widely accepted that high frequency financial returns are heteroskedastic. As
an example, Figure 1 plots the daily returns in % of the EUR/USD exchange rate on the period
January 1999 to - April 2011. This figure clearly suggests that the variance of this series is

indeed not constant over time and clusters of volatility can be visually detected. Since the seminal

w

| | —— EUR/USD

H\‘M Hl’ il l‘ TR0 ‘ i M (L H“ \M\“ .hl ”M

i \‘ H‘ il \‘ ‘\‘”\“w il ‘H‘ \‘\ ST ‘H‘H‘H‘ T w“ WAL Y ‘ I w il \‘l | \‘H“

_4;

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Figure 1: EUR/USD exchange rate returns in % on the periodatgri999 to - April 2011.

paper of ‘@), autoregressive moving average (ARMA) models have been extended to
essentially equivalent models for the variance. Autoregressive Conditional Heteroscedasticity
(ARCH) models have been extensively used in the literature. A time series y; (t = 1,...,T) is

said to follow an ARCH-type model when it can be described as follows:

ye = mu(n) +e 1)
er = oi(n)a &)
my(n) = cnlf-1) 3
ai(n) = h(nl-), (4)



where ¢(.|Q2;—1) and h(.|2;1) are deterministic functions of Q;_; (the information set at time ¢—1),

depending on an unknown vector of parameters 7, and z; is an (i.i.d.) process with E(z;) = 0
and Var(z;) = 1. For modeling the conditional mean mtiii one usually relies on Autoregressive
(AR) and/or Moving Average (MA) specifications. See _ZOlﬂ) for an overview of ARMA

models. Many parametric specifications have also been proposed for o2 (n). An extensive review

is given in ).

In this article we essentially focus on the conditional variance o7(n) and, more precisely, we
review recent developments on volatility forecasts evaluation and comparison. Once point fore-
casts are computed from one or more volatility models, models’ performances can be measured
by contrasting forecasts to realisations by means of a statistical loss function. Then performances
can be ordered according to the selected criterion and a ranking of models established. Finally,
inference on predictive accuracy based on such ranking can be carried out using a variety of
approaches. In this article, we discuss several statistical methods for single, pairwise and mul-
tiple forecast evaluation. A critical problem characterising the comparison of volatility forecasts
is the fact that the target variable is latent. Typically, this problem is solved by using a condition-
ally unbiased (and possibly consistent) ex-post estimator, often referred to as a volatility proxy.

Some of the most popular proxies used in the literature are mentioned in Section. However, it

has been shown in lHans_en_aLLd_Lmde ({ZD_OA), [BaLLQLl ({ZD_O_SJ), [Bamn_a_nd_ﬁhgmad (IZQ_O_&J) and
Laurent, Rombouts, and Violanté ‘2005) that the substitution of the true volatility by a proxy, by

definition imperfect, may introduce serious distortions in the ordering of volatility forecasts. To

overcome the problem, these authors provide conditions that the loss function has to satisfy in
order to ensure a ranking asymptotically robust to the noise in the proxy and propose a number of
robust functional forms. The rest of the article is organised as follows. In the next section, we dis-
cuss statistical methods for single, pairwise and multiple forecast evaluation. Then, we discuss
the problem of forecast evaluation under imperfect volatility proxies and provide an illustration

based on artificial and exchange rate data. The last section concludes.

I nference on volatility forecasts

GARCH model

The most popular ARCH-type model is certainly the GeneealiaRCH model 0@\14_19_136). The
GARCH (p, q) model specifies the squarea@fin Equation[(#) as follows:

q P
O'tz :O‘0+Zai‘€?7i+zgjat27j' (5)
i=1 j=1
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Estimation of ARCH-type models is commonly done by maximukelihood so that one has to make

an additional assumption about the innovation proe@sMels_L l(;Q_éG) anLj Bollerslev and ngldrihge

) show that the Gaussian quasi-maximum likelihood (P&timator is consistent if the conditional

mean and the conditional variance are correctly specified.

After the estimation of the parameters of the modedtep-ahead forecasts of the conditional variance, i.e.

2 i .
oy 1y, are obtained as follows:
q p
2 _ A A2 5.2
Oyt = Qo+ Z Q€% gt T Z ﬁjot-i—h—ﬂtv (6)
i=1 j=1
wheree?, ,, = o7, fori > 0whilec? ,, =<7, andoy,;, = o7, fori < 0. Equation[(B) is usually

computed recursively, even if a closed form solutiowpf,,, can be obtained by recursive substitution in
Equation[(6). Similarly, one can easily obtain fhstep-ahead forecast of the conditional variance of more

complicated ARCH-type models.

Single forecast evaluation

A simple method for evaluating the accuracy of the volatilirecasts of an ARCH-type model, say model

k, is the regression based evaluation proposelg by Mincer amnE/iti kLQ_QIQ) (hereafter MZ). This ap-

proach requires the estimation of the coefficients of a i=io@ of the target on a constant and the forecast

under evaluation (denoted ),

of :a—i—baf)k—l—ut. (7

The MZ regression allows to evaluate two different aspetthevolatility forecast. First, by testing the
joint hypothesisZ® : ¢ = 0Ub = 1, it allows to test the presence of systematic over- or updedgictions,
i.e., whether the forecast is biased. Second, beindzthef () an indicator of the correlation between the

realisation and the forecast, it can be used as evaluaiienien of the accuracy of the forecast.

Pairwise comparison

The first approach to pairwise comparison that we considbeitest of equal predictive ability proposed by

Diebold and Marla[l(l (19495) and further reflneJ by \]’\)est (Il@tracke“(zodo . Clark and McCr agLen
M)M@M@M@)l Clark and WA t(2 0{2), McCr ag]ken

.ZD_O_JY) an AD_LZSIJOS) among others (herdafiW). The DMW test is a very general

procedurﬂdemgned to compare two rival forecasts in terms of theredasting accuracy using a general

1The test does not require zero-mean forecast errors (headerecasts can be biased), specific distributional assomspnor

zero-serial correlation for the forecast errors.



loss function,(.) : Ry x H — RT™,H C R,,. The loss function, i.e. the measure of predictive

accuracy, can be specified according to the definition ohwgdity adopted by the forecaster.

Define the loss differential between modednd; as
d; = L(o},07)) — L(0}, 07 ) (8)

or using a more compact notatioh, = L, , — L, ;. Under stationarity of;, E[d,] is well defined and the

null hypothesis of equal predictive ability takes the foffi : E[d;] = 0. The test statistic is

DM—T:%r‘iN(O,l), 9)
whered = T71Y",d; andw = tliggVar(ﬁJ) is its asymptotic variance. A natural estimatorwof
is the sample variance a@f, though this estimator is consistent only if the loss déferals are serially
uncorrelated. Since this is not generally the case, a deitdBC estimator, such as the Newey-West

variance estimator, is preferable.

It is worth noting that the aim of these tests is to infer abBja (6y)] usingT ' >", d:(6y), whered,
represents the models parameters population values, asdeatuire asymptotics based on the size of the
estimation sampl& and the size of the forecast evaluation sanipte grow to infinity at the same raH?.
Since this type of asymptotics relies on parameter pomuatalues, the comparison of nested models
is obviously not allowed, because the asymptotic distidouof the statistic under the null turns out to be
degenerate (identically zero) when the restricted modelés A solution to this problem has been provided

by McCrackeL‘n 2007) arld Clark and McCraAkjen (iOOS) (CM) chrfairgue that, althoughi—* ", dy(0)—

E[d:(6o)] — 0 when models are nestefl; ' 3, d;(6) is a non-degenerate random variable. Based on this
p

argument, they suggest a variety of statistics, suiteceftirtg equal predictive accuracy, which depart from
the standard Gaussian asymptotics of DWM and whose disiibdepends entirely on the parameters
uncertainty. To obtain the null distributith Clark and M@keL 2009) develop an asymptotically valid

procedure based on bootstrap sampling.

biamﬂnﬁndﬂhjjejizogl)& develop a test of finite-sampéaljmtive ability. They construct a test for con-

ditional equal predictive accuracy based on asymptotigghich the estimation error is a permanent com-

ponent of the forecast error. Rather than focussing on utitonal expectations, their approach aims at in-
ferring about conditional expectations of forecast erroes inferring about &, (9)] using?T~* A dy ().

The null hypothesis of equal predictive ability can be espeal as

E[L(07, 07 r, (Ont.m)) = L(0F, 07 1.1 (Bj0,7,))] = Eldr0(6)] =0, (10)

2Such asymptotics apply naturally under a recursive fotscscheme, where the sample used to estimate the paramktees o

model grows at the same rate as the forecast sample, i.eclastegt the forecast is based on all available information up to1.

Additional assumptions for asymptotics based on rollind fixed schemes, where the estimation sample increaseshgitbverall

sample size, are given 96).



where, fori = k, 7, 7; is size of the estimation window, possibly different for lraaodel (explaining the
third indexino7 . . andfy.; ,) and7 = max(7;, 7;). Given that, under the null hypothesfsir ;, 3} is

a martingale difference sequende](10) is equivalenfdp Ed ;] = 0, whered,_;, referred to as the test
function, is a3,_1-measurable vector of dimensign Contrary to CM, in this case, standard asymptotic

normality arguments hold. The GW test takes the form of a Viighe statistic

T ! T
GW-Ty = T (leatldm> 0! (lezstldm) , (11)
t=1 t=1

where() is a consistent estimator of the variancedpf;dr ;. The statistic is asymptoticalh@ under the

null hypothesis.

An example of test function suggestedLb;LG_LamminLan_dJ}\(lﬁm&) isd; = (1,dr )" which allows to

test jointly for equal predictive ability and lack of sera@rrelation in the loss differentials.

Clearly, the GW asymptotics hold when the size of the estonatample is fixed as the forecasts sample
grows, i.e.,7 fixed, T — oo, but also under a rolling schefhand in general to any limited memory

estimator.

Multiple comparison

When multiple alternative forecasts are available, it mayobinterest to test whether a specific model,
selected independently from the data, produces systeafigtsuperior performances with respect to the
other models. The difference with the approaches discussi@ previous section is twofold: first, the
multiple comparison allows to recognize the multipliciffeet by testing multiple hypotheses, and second,
the choice of a benchmark requires a test of superior preeliability which requires testing composite
hypotheses, i.e. (weak) inequalities. Consequently, sigenptotic distribution of these tests is typically

non-standard.

The first approach that we consider is the reality check fta daooping OMMO) (hereafter RC).
Let us define the loss differential between the benchmatk, and some rival forecasty, k = 1,...,m
as

dex = L(07,07) — L(ot, 07 1.) (12)

andd; = (dy ¢, ..., dm.). Provided thatl; is (strictly) stationary, ;] is well defined and the null hypoth-
esis of interest takes the form

H: max E[dx+] <0 (13)

i.e., the benchmark is superior to the best alternativearGiethe null hypothesis if(13) is a multiple

hypothesis, i.e., the intersection of the one-sided inldial hypotheses[E, ] < 0. The RC test statistic

3The sequence dF parameters is generated using the most recent informatigna rolling sample of fixed siZE.
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takes the form

RC —-T = mgx(\/f dy,), (14)
whered, = TS di s

Given strict stationary odt,w @) invokes conditions provide@@%@lﬂbad tov/7T(d—

E[d,]) 4, N(0, Q). However, [I#) has an asymgatotic distribution under théwhich is unknown and that

depends on the nuisance parametéds|E&nds

M @) suggests two procedures to obtain the distoibwnder the null, namely the ‘Monte Carlo
Reality Check’ (simulated inference) and the ‘BootstragliRg Check’ (bootstrap inference), ite
(2000) for further details.

Note that, as iL Diebold and Mari@Ho (14995), White’s (200§)maptotics are based on population values.

Using similar arguments £s Giacomini and ﬂhkte (io,:)6§i HénQOOfS) generalize the procedure to the

comparison of nested models. Using a similar appr

) proposes a new test for superior
predictive ability (henceforth SPA). The SPA statisticeakhe form

VTdy
VWi
wherew,, is some consistent estimatorwf = tlim Var(\/TJk). The null distribution of the SPA statistic

is based on/Td % N% fic ), whereni© is a consistent estimator pf = E[d;]| that conforms with the null
hypotheas@

distribution under the null hypothesis.

SPA —T = max lmkax 0|, (15)

05) also provides a detailed dé¢iseripf the bootstrap scheme used to obtain the

The SPA test differs from the RC in two ways. First, he propasdifferent statistic based on studentized
guantities to reduce the loss of power that the RC can suffervpoor and irrelevant forecasts are consid-
ered. Second, he employs a sample dependent distributiter thee null. The latter is based on a procedure
that incorporates additional sample information in ordadentify the relevant alternatives. In fact, while

the procedure based on the principle of the least favouraiméguration to the alternative adopted by
o

e (2000) implicitly relies on an asymptotic distriboti under the null that assumegiE,] = 0 for

all k, E&S) points out that all negative values|[df ] should be considered because they also
conform with the null. He provides lower and upper boundshdistribution of[(Ib) corresponding to
a liberal test under the null hypothesis that the models witlhse performance than the benchmark are
poor models in the limit and a conservative one under the fassurable configuration to the alternative,

respectively.

Clearly, in many applications the choice of a benchmark matybe obvious or an objective benchmark

may not exist. In other applications a single model thatdsi§icantly superior to all the alternatives may

4E[d,] is estimated using the least favorable configuration formitexnative which in this case correspond fo#f = 0, i.e., all

alternatives are as good as the benchmark.



not emerge especially when the set of competing modelsds land/or the data may not be sufficiently
informative to give a univocal answer. In these cases, ttexfster may aim to reduce the set of competing
models to a smaller set that is guaranteed to contain thédrestisting model at a given confidence level.

This approach is known as multiple comparison without aaintr

Within this category we find the model confidence set (MCSLL)_etL&a_Lunds__and_Naicln_(zbo9). The

MCS is a sequential test of equal predictive ability. It €iff from the RC and the SPA because it does

not require a benchmark to be specified. It has the additimadntage of relying on simple hypotheses

(equalities), allowing to derive standard asymptotics.

Given an initial set of forecasts/", the starting hypothesis is that all models\if have equal forecasting
performances. The relative performance of each pair otfses is measured b, ; = L(o7, crf,k) —
L(o},07;), forall k,j € M° with k # j. Under the assumption thaf ;. ; is stationary, the null

hypothesis of equal predictive ability takes the form
H®:Eldx;]=0  Vk,je M (16)

If the null of equal predictive ability is rejected at a giveonfidence level, then an elimination rule is
called to remove the worst performing model. The equal pted ability test is then repeated until the
non-rejection of the null, while keeping the confidence levdixed at each iteration, thus allowing to
construct g1 — a)-confidence setM* = {k € My : E(d: ;) <0V j € M}, for the best model(s) in
MO,

LetL, be the(m x 1) vector of sample performancéso?, af)k), k € M andc; the(mx (m—1)) orthog-
onal complement of ax-dimensional vector of ones, whene is the dimension of\/. Then, the vector
/| L, can be viewed as: — 1 relevant contrasts as each element can be obtained astec@mahination of
dy.jt, k,j € M which has mean zero under the n{il[l(16). Henkel, (16) is etgrivéo B/, L] = 0 and,
under strict stationarity ofy, ; , it holds that7—1/2 ZL /| L is asymptotically Gaussian with meén
and covariance matri® = lim;_. ., Var (T*l/2 Zthl LlLt). Thus, it seems natural to employ traditional

guadratic-form type of tests as

T ! T
MCS—Tog=T <T—1 Zgu) ar <T‘1 ZLQM) 17)
t=1 t=1
and
T-q
q(T - 1)

where() is some consistent estimator 6f ¢ = rank Q) denotes the number of linearly independent

MCS — Tp = MCS - To, (18)

contrasts and)™ denotes the More-Penrose pseudo-invers@.ofrhe statistic in[(17) is asymptotically
Xg, wheread (18) is asymptotically, f-—, under the null hypothesis, as the subscript&uadratic) and”
(F-distributed) suggest.



The main pitfall of these asymptotic tests is that, wheris large, it might be problematic to obtain a well

conditioned estimate @2. Alternativelyl Hansen, Lunde, and NQLEH (3009) propasethimpler statistics

expressed as functions of studentized quantities. Thesfasstic is expressed as a sum of deviations from

the common average (hence the subscript). Under the nubithgpisi® = E[d] = 0 Vk € M the
statistic takes the fo
1
MCS —Tp = — 2
p=—> ti (19)
keM

wherety = VTdy/\/&P, k = 1,...,m, andd, = m~'¥;endy,; is the contrast of models sample
loss with respect to the average across all modelsiand= TS d;. ;. is the sample loss differential
between models and;. The variances” are consistent estimatorsof’ = lim;_...Var(vTd},). The
remaining two statistics, dubbed range and semi-quadtakie the form

1 2
MCS —Tgr = é?é%'t’w' and  MCS-Tsq = — kze:M tr (20)
5]

respectively, where, ; = /Tdy j/\/@F, k,j =1,...,mk # jands = 1, ...,m(m — 1) and the variance

&R is a consistent estimator of* = lim; .. Var(v/Tdy ;).

Note that the distribution of{19) and{20) is non-standard depend on the nuisance parameigrsand

wlt, respectivel 009) also pealathils on the bootstrap scheme employed

to solve the nuisance parameter problem and obtain théodistm under the null hypothesis.

If the null hypothesis is rejected, thEn Hansen, Lunde, mld 2009) suggest the use of the following

elimination rule&y; = arg max tr which excludes the model with the largest standardisedssxioss
S

relative to the average across models. The iterative tegtincedure ends when the first non rejection
occurs, or obviously if all models but one have been recalgigliminated. Finally, the MCS p-value is
equal top; = max(p;—1,p(i)), i = 1,...,m, wherep; is the p-value of the test under the null hypothesis

HO

Vi 1-€., attheth step of the iteration process. By convention the p-valbervithere is only one surviving

model isp,, = 1.

Interestingly, the SPA and MCS tests are implemented in the ©x software package MULCOM of
10).

L ossfunctions and the latent variable problem

A critical problem, which characterises the comparison ahitility forecasts, is the fact that the target
variable is latent. Typically, this problem is solved byngsia conditionally unbiased (and possibly con-

sistent) ex-post estimator, often referred to as volgtitoxy and denoted?. It is worth noting that the

5Note that the null hypothesis is equivalent[fol(16).



only property that we require for the volatility proxy is aitional unbiasedness, i.e., §[6?] = o?2.

if not otherwise stated, we assume that at least one condiljounbiased proxy is available. In some
specific cases we will also require the stronger assumpfiaomsistency or the availability of a vari-
ety of proxies that can be ordered in terms of their level afuaacy. A simple variance proxy com-
monly used in the financial literature is the squared retalthpugh such proxy is known to be extremely
noisy. However, its scarce informative content makes iuiied for the purpose of assessing the accu-
racy of volatility forecasts, in that an uninformative vility proxy makes difficult to asses the statisti-
cal relevance of the forecast performances. Other vdiaplioxies based on realised moments are dis-

cussed i||1 Barndorff-Nielsen and Sheoluard (LdOZ) Zhanmmmnﬁahajkmm&u_@%),

|Barnd0rff-NieIsen. Hansen, Lunde, and Shen| rd (2008ngrtiee others. Range based variance estima-

tors can be found in ParkinAJn (1£€JQ), Garman and ktﬁkmﬁ‘ﬁﬂiﬂdﬂe@ﬁlwa.
As first noted bJ_AndgLsgn_and_B_ollglelél(lb%) Jand_Andﬁ[Bﬂﬂg&Iﬂ_andM_eﬂdath(ZQbs), condi-

tional unbiasedness alone does not suffice to ensure, astjoatly, the same outcome that would be

obtained if the true volatility was observable. It has bebovw in|Hansen and LLJnLjL_(AJ)OE), Pgtton
JZD_OEL),LBaLLQn_and_SthQLaLd_(ZIOO9) la_nd_LauLem._Rmem.dMalaﬁ I(ZD_QIQ) that the substitution of

the true volatility by a proxy, that by definition is imperfemay introduce serious distortions in the or-

dering of volatility forecasts. More formally, given two el based forecaste,?),g andaf_’j, it may be
the case that a given loss functidn.) is such that the true ordering between mokleind model;j im-
plies L (07,07 ,)] < E[L(07,07 )], while the ordering based on the proxy reveal& &7, o7 ,)] >
E[L (62, af_’j)]. Since the distortion in the ordering does not disappeanpsytically, when the evaluation
is based on a target observed with error the choice of theiatiah criteria becomes critical in order to
avoid a biased outcome. To overcome the problem, theseraudkfine conditions that the loss function
has to satisfy in order to ensure a ranking asymptoticalbusbto the noise in the proxy and propose a

number of robust functional forms.

Given the latent nature of the variable of interest and sinedype of evaluation and inference on forecasts
accuracy that we have in mind relies, more or less expljattythe ordering implied by a predefined loss
function, e.g., squared, absolute, relative forecast errget correlation between forecasts and realisations,
if the ranking is non-robust to the noise in the proxy (i.esubject to potential distortions) the inference
on models’ predictive accuracy will be incorrect even if thsting procedure is formally valid. If instead

the loss function ensures robustness of the ranking, thebitiy of the volatility proxy is only likely to

reduce the power of the test but not its asymptotic size. t, Rombouts, and Viol 2009) for

an illustration.

We first consider the evaluation based on the MZ approachioDsly the latent nature of the target variable

makes the regression [ (7) unfeasible. Substituting treemariance by some conditionally unbiased proxy,



62 = o + \; with E;_1[\;] = 0 and Vag_;[\;] # 0 and finite, we can rewrit¢17) as
62 =a+ bafyk + e, (21)

wheree; = \; + u;. Sinces? is a conditionally unbiased estimator of the true variamen{21) yields

unbiased estimates afandb.

As mentioned, thek? of the MZ regression has been used as a criterion for ordesiaga set of volatil-

ity forecasts, sJe Andersen and BoIIe[Is ev 998J and AsateBollerslev, Diebold, and Lad; s (2003) for

examples. Hansen and LuMe (5006) show that, due to the ledeiable problem, this criterion is not

always adequate to the scope and may lead to a perverse @ut€bmy derive sufficient conditions under

which the ordering of volatility forecasts is unaffectedemhthe true variance is substituted by a proxy.
They establish that th&? is a valid criterion if E_1 [07 — 67](0'¢(0?)/0(c?)") = c; for some constant
¢i,Vt =T +1,...,7 + T andi € N and wherep(.) represents the transformation of the dependent
variable and the regressor, e.g., log, square, squaregimot;This condition validates the use of the MZ
regression in level but also, for example, of the quadratindformation, i.e.¢(x) = 22, although in

the latter case, as pointed outlby Andersen, BoIIersIevMadi 2005), the quadratic transformation

of an unbiased forecasts will not generally result to be asd for(52)2, but rejects, for example, the

log-regression. Analytical examples under differentriistional assumptions for the volatility proxy can

be found irl Patton and Shepd rd (2009).

Given [Z21), it is also interesting to elaborate on the rolypt by the level of accuracy of the proxy.

Clearly, the variance of the innovations [n{21) dependshenaccuracy of the volatility proxy. Thus, if
a high quality proxy is available, the regression paransetee estimated more accurately. Similarly, as
the quality of the proxy deteriorates, tii#& of the regression ifi(21), Cé¥7, 07 ,)*/(Var(o7)Var(o7 ),
results penalised. S rJiLeLJ1998)Tfanalyt|cal example.

When the ordering is based on a statistical loss functionffecient condition to ensure consistency of the
orderingis thad”L(a7, 07 ,,) /(97 )? exists and does not dependafy . It follows immediately that many
evaluation criteria commonly used in applied works, eaygéast errors of square roots and log transforma-
tions or proportional error loss functions, are rejecte@rels the squared forecast error is a valid criterion.
Numerous examples of loss functions violating this conditare discussed kLy Hansen and LLIJ de (2006)

an 9).

Focussing on the univariate dimensi@it@ow) pesvanalytical results for the undesirable out-

come that arises when using a loss function that violatesétaand Lunde’s (2006) conditions, under

different distributional assumption for the returns, elifint volatility proxies and a number of commonly

used loss functions. Furthermore, building u kZQ_QLS), he provides necessary and

sufficient conditions on the functional form of the loss ftiao (defined within the class of homogeneous

10



statistical loss functions that can be expressed as meagechfperiod loss) ensuring consistency of the

ordering when using a proxy. The following family of funati®

e |69 = (03] - 5 (0B 6 —02,) for & ¢ (0,1)

L(67,07) =% o0fp— 07+ &flogg‘?i foré =1 (22)
% —logZ- —1 for € =0
tk tk

represents the subset of consistent homogeneous losofisict he parameter represents the degree of
homogeneity and determines the shape of the function: syrimnge = 2) or asymmetric{ # 2). Note
that¢ = 2 corresponds to the squared forecast error, while 2 (resp.¢ < 2) implies that over- (resp.

under-) predictions are more heavily penalised.

A generalisation to the multivariate case has been proptml@dtton and Shepp“d (ZJ)OQ) Jznd Laurent, Rombouts, am

). The latter also show that, under the higher levelragsion of consistency of the volatility proxy,

the distortion introduced in the ordering when using an irsistent loss function tends to disappear as
the quality of the proxy improves. Since non-robust losfioms might have other desirable properties,
as for example down-weighting extreme forecast errorg; thay still be used provided that the volatil-
ity proxy can be assumed to be sufficiently accurate relativihe degree of similarity between models

performances.

Consistency of the ordering and inference on forecast perfor mances

In this section, using a Monte Carlo simulation devoted ltgstrate asymptotics that are solely based on
T — oo, we assess to what extent the latent variable problem irsddiséortions and discuss the role of

the quality of the proxy. Although we focus on univariateatdity models, a similar exercise based on the

comparison of multivariate models is presenteld_ln_La.uEmnb_o_uli_a.ndMQLa.[ltle_(Zdog).

The forecast performances are measured by the loss fuadtiorablel. The MSE and the QLIKE loss

functions represent the robust loss functions as theyfgatensen and Lunde’s (2006) condition (column
3) discussed in the previous section. They belong to thelyamfifunctions in [22) with¢ = 2 and0

respectively. The other two loss functions, namely Log-M®id MSE-SD, are based on transformations
of the variables of interest. Frequently used in appliedwtireir use is often justified using the argument
that these transformations avoid an excessive penalisafienodels that exhibit few extreme forecast

errors. The violation of Hansen and Lunde’s (2006) conditsoshown in column 3.

We generate artificial data at a daily frequency from a noadr asymmetric GARCI—MNQ,
1993), i.e.

Yo = Otz (23)
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Table 1 Loss functions.

Name L(o?, hy) 0?L(02,hy)/(00?)? Status
MSE (02 — hy)? 2 robust
Log-MSE  (log(a?) — Iog(ht))2 2% non-robust
QLIKE h—' Iog (0_%)2 robust
MSE-SD (or — vVht)? . @)3 non-robust
o7 = wtai(e—1+701-1)° + Biop 4, (24)

wherez, “&* N(0,1) and with parameters = 0.05, « = 0.05 v = —0.12 and = 0.93. Following
), we also generate intraday returns comjgatiith model [2B){{24) when aggregated at the
daily frequency by setting; = vazl 21,5, Wherez, ; S N(0,1/N), which satisfies Vde;) = 1. The

N intraday returns of day are obtained by assuming that the intraday volatility isstant over the day,
i.e.,yr; = oz ;. At the highest frequency, we simulatéd = 256 returns per day. We further aggregate

returns, by summation, at 7 lower frequencies, i.e. 12838416, 8, 4, 2 observations per day.

In this setting, and foIIowinb_An_d_e_Ls_en_a.n_d_B_QLLeLlleﬂLd}agve dispose of 9 unbiased proxies of the true

volatility, denotedRV; v = Zf;l yfz for N = 256,128, 64,32, 16,8,4, 2,1, ordered in terms of their

level of accuracy.

The set of competing models includes, the GARML ), the GJW@D&B‘UWI&
) the exponential weighted moving average (EWMA) viilded parameters (J.P.Mor alﬂ,_lb%)
the alternative GARCH (Alt- GARCHJ (Knight and Satc“;@) and the non-linear ARCH (NARCH)
({ttlggms_amj_B_eJH_lQ;iaz) models. The models are estimat€NblyE using the first 4000 data points at

the daily frequency. 1000 one-step-ahead forecasts arputenhusing a fixed scheme. The simulations

are based on 1000 replicati

The underlying ordering implied by a given loss function giifer it is robust or not, is identified by ranking

forecasts with respect to the true varianeg(indicated byN = ~c in Figures2 anfll3.
6All programs have been written by the authors using OsttﬁiQ) and G@RCH 09).
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Figure[2 represents the ranking based on the average saemitenpances (over the 1000 replications)
implied by the two robust loss functions for the true vareuy = oo) and various levels of precision

for the proxy (V = 256 to N = 1). The ranking appears stable and loss differentials betweadels

_ Alt-GARCH

0-0004% Al-GARCH
0.0004

0.0003%

| EwmA

AL NARCH 0.000F Evumia

0.0002%

GARCH
3r - - - 0.000%-

0.0001!

oL GIR [ NARCH
0.000%
5.00e-9-
1| NAGARCH GAg,CJ'L 777777777777777777777777777777777777777777 L

o 256 128 64 32 16 8 a 2 1 o 256 128 64 32 16 18 4 2 1

a) MSE loss function

_ _EWMA

0.01d- EWMA

| _Alt-GARCH

| .NARCH

0.008- Alt-GARCH

3l GARCH _ _ _ Eo

GIR 0.00:

1| NAGARCH 000 GARGH __

b) QLIKE loss function

Figure 2: Ranking implied by MSE and QLIKE. Ranking based og. erformances (left) and avg. loss

differentials from nagarch (right).

remain constant independently of the level of accuracy @ptfoxy. Thus, the noise in the volatility proxy
is asymptotically irrelevant to the ordering, i.e., thekiag obtained undeRV; y is consistent for the one

under the true, latent, conditional variancg for any value of\V.

When considering the non-robust loss functions the objediias becomes striking. Indeed, Figlie 3
suggests that for non-robust loss functions, inferior ndmerge as the quality of the proxy deteriorates.
The relative performance of inferior models begins to inweroapidly and we observe major distortions
at all levels of the ranking. For instance, under the Log-Wt8E EWMA model, which ranks last when
using the true variance, raises to the top of the ranking wheproxy used in the evaluation is computed
using N = 4 (or less) intraday returns, while under the MSE-SD, the@&#RCH model raises from the

last to the first position of the ranking when the evaluatimbased on the least accurate proXy £ 1).

In conclusion, for a robust loss function, even when thetiredgperformances are extremely close, the

ordering remains unaffected under a noisy proxy and it igdapossible to recover asymptotically the

13
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0.02F EWMA e
J Arcarch NCGARGH
- - | [ —
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NAGARCH
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\
\
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N N
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a) Log-MSE loss function

Alt-GARCH

o P 0.0005 Alt-GARCH

EWMA
sL EWMA 0.0004-
4} NARCH 0.0003
3L GARCH - — - 0-000% harch (Higgins and Bera, 1992)
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GARCH
1| NAGARCH ° NAGARCH

N N
o 256 1128 64 32 16 8 4 2 1 o 256 128 64 32 16 8 4 2 1

b) MSE-SD loss function

Figure 3: Ranking implied by Log-MSE and MSE-SD. Rankingdzhen avg. performances (left) and

avg. loss differentials from nagarch (right).
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true ranking. For a non-robust loss function, it is possiblescover this result only if the volatility proxy
is sufficiently accurate relative to the degree of simijabietween model performances. However, as the
quality of the proxy deteriorates the relative performanaiesome models appear to improve with respect

to the others.

Empirical application

Data description

The empirical application is based on the EUR/USD exchaatg rThe models’ parameters are esti-
mated using the first 3666 trading days (January 6, 1987 t®mber 28, 2001). The parameter es-

timates are then used to compute 1-step ahead forecastsefdoltowing 660 trading days (January

2, 2002 to August 26, 2004). The volatility proxy for the ewaion period is the realised variance
of i 03) comguising intra-day returns sampled at the 5-
minute frequency ¥ = 288). The forecasting models set includes the six specificatised in the
previous section. Model performances are evaluated usiogdbust loss functions, namely the MSE and
the QLIKE.

Table 2 Sample evaluation of forecasting performances.

MSE

NAGARCH GARCH EWMA AIt-GARCH GJR NARCH
0.0388 0.0393  0.0439 0.0383 0.0392 0.0393

QLIKE
NAGARCH GARCH EWMA AIt-GARCH GJR NARCH
0.0774 0.0799  0.114 0.0750  0.0794 0.0767

The sample evaluation of the six competing models is redant&abld 2. Focusing on the MSE loss func-
tion, the model exhibiting the best sample performanceasAttr GARCH, followed by the NAGARCH
and the GJR. The worst performing model is the EWMA. A simidarking is obtained when the evaluation

is based on the QLIKE loss function.

The GW tests (with test functiofy = 1) supports the hypothesis of superior predictive accurddiie
Alt-GARCH with the null hypothesis of zero loss differeri§ideing rejected in favour of this model in
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Table 3 GW test (test functiof) = 1).

MSE

NAGARCH GARCH EWMA Alt-GARCH GJR NARCH

NAGARCH - -2.585 -5.399 1.317 -2.445  -0.984

GARCH - -5.384 2271 2.916 0.019

EWMA - 4.620 5.403 4.653

Alt-GARCH - -2.129 -1.295

GJR - -0.176

NARCH -
QLIKE

NAGARCH GARCH EWMA Alt-GARCH GJR NARCH

NAGARCH - -3.625 -6.691 2.445 -3.493  0.673
GARCH - -6.692 3.751 4.069 2.164

EWMA - 6.466 6.705 6.638

Alt-GARCH - -3587 -1.045
GJR - 1.916
NARCH -

Note: Significant values at the 5% confidence level (twathiest) in bold indicate the rejection of the null
hypothesis of equal predictive ability. The results suggegreference for the model reported in the row

(resp. column) if negative (resp. positive).
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Table 4 SPA test.

Benchmark

NAGARCH
GARCH
EWMA
Alt-GARCH
GJR

NARCH

MSE
Yz DPe Pu
012 021 0.35

0.01 0.01 0.02

0.00 0.00 0.00

058 094 097

0.04 0.04 0.06

016 016 0.23

QLIKE

Yz DPe Pu

0.03 0.03 0.04

0.00 0.00 0.00

0.00 0.00 0.00

049 083 096

0.00 0.00 0.00

0.17 0.26 0.37

Note: P-values in bold indicate the non-rejection of the $iaA hypothesis for the corresponding

benchmarkp; andp,, denote respectively the lower and the upper bounds for thsistent p-value

(pe)-

Table5 MCS test.

MO
NAGARCH
GARCH
EWMA
Alt-GARCH
GJR

NARCH

MSE
Tk Tp Tsq

022 032 0.18

0.01 006 0.01

0.01 0.00 0.00

1.00 100 1.00

0.03 0.17 0.09

022 032 0.18

QLIKE
Tr Tp TSQ

0.17 006  0.05

0.00 0.00 0.00

0.00 0.00 0.00

1.00 1.00 1.00

0.00 0.01 0.00

029 029 029

Note: The models corresponding to the figures in bold reptehe MCS at the 5% confidence level.
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three cases and non-rejected in two. The results also suggesference for the NAGARCH. When we
consider the QLIKE loss function the results are similar #redtest suggests a preference for Alt-GARCH,
NAGARCH but also NARCH. However, as mentioned above, inmtipg jointly results based on the
pairwise approach may be misleading. When applying the B#\ we find that 3 models (Alt-GARCH,
NAGARCH and NARCH) under the MSE loss function and 2 models-GARCH and NARCH) under

the QLIKE loss function cannot be rejected as the one outpmiifig all the others.

Finally, the ambiguous result of the GW test, corroboratethle outcome of the SPA test which does not
provide a clear identification of a single superior modeppmrts the use of inference based on the more
general MCS. Indeed, the MCS finds different sets dependinty® loss function and the statistic used.
When performances are evaluated using the MSE loss funcimier?’z andZ’s the MCS consists of the
Alt-GARCH, the NAGARCH and the NARCH while undét, the MCS appears to be more conservative,
including all models except the EWMA. The results appeardsbmewhat homogeneous when using
the QLIKE loss function. In this case the three statistickvdethe same MCS which consists of the

Alt-GARCH, the NAGARCH and the NARCH models.

Thus, given the composition of the MCS we can conclude thaiemsophisticated and flexible models
are required to fit the dynamics of the conditional varianche EUR/USD, with emphasis given to the

non-linear relationship between conditional variance iandvations.

Conclusion

In this article we provide an overview of methods for volatility forecast evaluation and compari-
son. We discuss a large variety of methodologies that can be classified in three groups, namely
methods for the evaluation of the forecasting accuracy of single forecast, methods for pairwise

comparison and methods for multiple comparison.

We pay particular attention to the problems that arise due to the latent nature of the conditional
variance. In fact, being the variance unobservable the actual evaluation of the volatility forecasts,
usually involving a loss function, requires the use of some proxy. Since this substitution may
introduce dramatic distortions in the ordering between forecasts under evaluation, which can be
avoided by an appropriate choice of the loss function, we elaborate on the admissible functional
form of the loss function and discuss some examples. Using artificial data, we illustrate the danger
of combining an inconsistent loss function and a noisy proxy of the true volatility. In this article we
focus on methodologies for forecasts evaluation and comparison where the forecast accuracy is
measured by a statistical criterion, i.e., means of functions of predictions and predictions errors.
At some point, the forecaster may be interested in the economic evaluation of the forecasts,
for instance by means of an utility or profit function or yet any other economically meaningful

application-specific evaluation criteria. However, to date a comprehensive investigation of the
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properties of economic loss function has not been addressed yet. In particular the robustness of
the ordering when the evaluation is based on an imperfect volatility proxy remains an open issue

and should be further investigated.
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