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Abstract

This article surveys the most important developments in volatility forecast comparison and model

selection. We review a number of evaluation methods and testing procedures for predictive ac-

curacy based on statistical loss functions. We also review recent contributions on the admissible

form of loss functions ensuring consistency of the ordering when forecast performances are eval-

uated with respect to an imperfect volatility proxy. The techniques discussed are illustrated using

artificial and EUR/USD exchange rate data.
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Traditional regression tools have shown their limitation in the modelling of financial time-series

(say yt). Assuming that only the conditional mean could be changing with covariates while the

variance remains constant over time often revealed to be an unrealistic assumption in practice.

Indeed, it is now widely accepted that high frequency financial returns are heteroskedastic. As

an example, Figure 1 plots the daily returns in % of the EUR/USD exchange rate on the period

January 1999 to - April 2011. This figure clearly suggests that the variance of this series is

indeed not constant over time and clusters of volatility can be visually detected. Since the seminal
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Figure 1: EUR/USD exchange rate returns in % on the period January 1999 to - April 2011.

paper of Engle (1982), autoregressive moving average (ARMA) models have been extended to

essentially equivalent models for the variance. Autoregressive Conditional Heteroscedasticity

(ARCH) models have been extensively used in the literature. A time series yt (t = 1, . . . , T ) is

said to follow an ARCH-type model when it can be described as follows:

yt = mt(η) + εt (1)

εt = σt(η)zt (2)

mt(η) = c(η|Ωt−1) (3)

σt(η) = h(η|Ωt−1), (4)
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where c(.|Ωt−1) and h(.|Ωt−1) are deterministic functions of Ωt−1 (the information set at time t−1),

depending on an unknown vector of parameters η, and zt is an (i.i.d.) process with E(zt) = 0

and V ar(zt) = 1. For modeling the conditional mean mt(η), one usually relies on Autoregressive

(AR) and/or Moving Average (MA) specifications. See Brockwell (2011) for an overview of ARMA

models. Many parametric specifications have also been proposed for σ2
t (η). An extensive review

is given in Bollerslev (2010).

In this article we essentially focus on the conditional variance σ2
t (η) and, more precisely, we

review recent developments on volatility forecasts evaluation and comparison. Once point fore-

casts are computed from one or more volatility models, models’ performances can be measured

by contrasting forecasts to realisations by means of a statistical loss function. Then performances

can be ordered according to the selected criterion and a ranking of models established. Finally,

inference on predictive accuracy based on such ranking can be carried out using a variety of

approaches. In this article, we discuss several statistical methods for single, pairwise and mul-

tiple forecast evaluation. A critical problem characterising the comparison of volatility forecasts

is the fact that the target variable is latent. Typically, this problem is solved by using a condition-

ally unbiased (and possibly consistent) ex-post estimator, often referred to as a volatility proxy.

Some of the most popular proxies used in the literature are mentioned in Section . However, it

has been shown in Hansen and Lunde (2006), Patton (2009), Patton and Sheppard (2009) and

Laurent, Rombouts, and Violante (2009) that the substitution of the true volatility by a proxy, by

definition imperfect, may introduce serious distortions in the ordering of volatility forecasts. To

overcome the problem, these authors provide conditions that the loss function has to satisfy in

order to ensure a ranking asymptotically robust to the noise in the proxy and propose a number of

robust functional forms. The rest of the article is organised as follows. In the next section, we dis-

cuss statistical methods for single, pairwise and multiple forecast evaluation. Then, we discuss

the problem of forecast evaluation under imperfect volatility proxies and provide an illustration

based on artificial and exchange rate data. The last section concludes.

Inference on volatility forecasts

GARCH model

The most popular ARCH-type model is certainly the Generalized ARCH model of Bollerslev (1986). The

GARCH (p, q) model specifies the square ofσt in Equation (4) as follows:

σ2
t = α0 +

q
∑

i=1

αiε
2
t−i +

p
∑

j=1

βjσ
2
t−j . (5)
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Estimation of ARCH-type models is commonly done by maximum likelihood so that one has to make

an additional assumption about the innovation processzt. Weiss (1986) and Bollerslev and Wooldridge

(1992) show that the Gaussian quasi-maximum likelihood (QML) estimator is consistent if the conditional

mean and the conditional variance are correctly specified.

After the estimation of the parameters of the model,h-step-ahead forecasts of the conditional variance, i.e.

σ2
t+h|t are obtained as follows:

σ2
t+h|t = α̂0 +

q
∑

i=1

α̂iε
2
t+h−i|t +

p
∑

j=1

β̂jσ
2
t+h−j|t, (6)

whereε2
t+i|t = σ2

t+i|t for i > 0 while ε2
t+i|t = ε2

t+i andσ2
t+i|t = σ2

t+i for i ≤ 0. Equation (6) is usually

computed recursively, even if a closed form solution ofσ2
t+h|t can be obtained by recursive substitution in

Equation (6). Similarly, one can easily obtain theh-step-ahead forecast of the conditional variance of more

complicated ARCH-type models.

Single forecast evaluation

A simple method for evaluating the accuracy of the volatility forecasts of an ARCH-type model, say model

k, is the regression based evaluation proposed by Mincer and Zarnowitz (1969) (hereafter MZ). This ap-

proach requires the estimation of the coefficients of a regression of the target on a constant and the forecast

under evaluation (denotedσ2
t,k),

σ2
t = a + bσ2

t,k + ut. (7)

The MZ regression allows to evaluate two different aspects of the volatility forecast. First, by testing the

joint hypothesisH0 : a = 0∪ b = 1, it allows to test the presence of systematic over- or under-predictions,

i.e., whether the forecast is biased. Second, being theR2 of (7) an indicator of the correlation between the

realisation and the forecast, it can be used as evaluation criterion of the accuracy of the forecast.

Pairwise comparison

The first approach to pairwise comparison that we consider isthe test of equal predictive ability proposed by

Diebold and Mariano (1995) and further refined by West (1996), McCracken (2000), Clark and McCracken

(2001), Corradi, Swanson, and Olivetti (2001), Clark and West (2006), Clark and West (2007), McCracken

(2007) and Clark and McCracken (2005) among others (hereafter DMW). The DMW test is a very general

procedure1 designed to compare two rival forecasts in terms of their forecasting accuracy using a general

1The test does not require zero-mean forecast errors (hence the forecasts can be biased), specific distributional assumptions nor

zero-serial correlation for the forecast errors.
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loss function,L(.) : R++ × H → R+,H ⊂ R++. The loss function, i.e. the measure of predictive

accuracy, can be specified according to the definition of optimality adopted by the forecaster.

Define the loss differential between modelk andj as

dt = L(σ2
t , σ2

t,k) − L(σ2
t , σ2

t,j) (8)

or using a more compact notation,dt = Lt,k − Lt,j. Under stationarity ofdt, E[dt] is well defined and the

null hypothesis of equal predictive ability takes the formH0 : E[dt] = 0. The test statistic is

DM − T =

√
T d̄√
ω

a∼ N(0, 1), (9)

where d̄ = T−1
∑

t dt and ω = lim
t→∞

Var(
√

T d̄) is its asymptotic variance. A natural estimator ofω

is the sample variance ofdt, though this estimator is consistent only if the loss differentials are serially

uncorrelated. Since this is not generally the case, a suitable HAC estimator, such as the Newey-West

variance estimator, is preferable.

It is worth noting that the aim of these tests is to infer aboutE[dt(θ0)] usingT−1
∑

t dt(θ0), whereθ0

represents the models parameters population values, and thus require asymptotics based on the size of the

estimation sampleT and the size of the forecast evaluation sampleT to grow to infinity at the same rate.2

Since this type of asymptotics relies on parameter population values, the comparison of nested models

is obviously not allowed, because the asymptotic distribution of the statistic under the null turns out to be

degenerate (identically zero) when the restricted model istrue. A solution to this problem has been provided

by McCracken (2007) and Clark and McCracken (2005) (CM), which argue that, althoughT−1
∑

t dt(θ̂)−
E[dt(θ0)] →

p
0 when models are nested,T−1

∑

t dt(θ̂) is a non-degenerate random variable. Based on this

argument, they suggest a variety of statistics, suited for testing equal predictive accuracy, which depart from

the standard Gaussian asymptotics of DWM and whose distribution depends entirely on the parameters

uncertainty. To obtain the null distribution Clark and McCracken (2009) develop an asymptotically valid

procedure based on bootstrap sampling.

Giacomini and White (2006) develop a test of finite-sample predictive ability. They construct a test for con-

ditional equal predictive accuracy based on asymptotics inwhich the estimation error is a permanent com-

ponent of the forecast error. Rather than focussing on unconditional expectations, their approach aims at in-

ferring about conditional expectations of forecast errors, i.e. inferring about E[dt(θ̂)] usingT−1
∑

t dt(θ̂).

The null hypothesis of equal predictive ability can be expressed as

E[L(σ2
t , σ2

t,k,τk
(θ̂k,t,τk

)) − L(σ2
t , σ2

t,j,τj
(θ̂j,t,τj

))] ≡ E[dT ,t(θ̂)] = 0, (10)

2Such asymptotics apply naturally under a recursive forecasts scheme, where the sample used to estimate the parameters of the

model grows at the same rate as the forecast sample, i.e. at each stept the forecast is based on all available information up tot − 1.

Additional assumptions for asymptotics based on rolling and fixed schemes, where the estimation sample increases with the overall

sample size, are given in West (1996).
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where, fori = k, j, τi is size of the estimation window, possibly different for each model (explaining the

third index inσ2
t,k,τk

andθ̂k,t,τk
) andT = max(τk, τj). Given that, under the null hypothesis,{dT ,t,ℑt} is

a martingale difference sequence, (10) is equivalent to E[δt−1dT ,t] = 0, whereδt−1, referred to as the test

function, is aℑt−1-measurable vector of dimensionq. Contrary to CM, in this case, standard asymptotic

normality arguments hold. The GW test takes the form of a Wald-type statistic

GW − T δ
T = T

(

T−1
T
∑

t=1

δt−1dT ,t

)′

Ω̂−1

(

T−1
T
∑

t=1

δt−1dT ,t

)

, (11)

whereΩ̂ is a consistent estimator of the variance ofδt−1dT ,t. The statistic is asymptoticallyχ2
q under the

null hypothesis.

An example of test function suggested by Giacomini and White(2006) isδt = (1, dT ,t)
′ which allows to

test jointly for equal predictive ability and lack of serialcorrelation in the loss differentials.

Clearly, the GW asymptotics hold when the size of the estimation sample is fixed as the forecasts sample

grows, i.e.,T fixed, T → ∞, but also under a rolling scheme3 and in general to any limited memory

estimator.

Multiple comparison

When multiple alternative forecasts are available, it may be of interest to test whether a specific model,

selected independently from the data, produces systematically superior performances with respect to the

other models. The difference with the approaches discussedin the previous section is twofold: first, the

multiple comparison allows to recognize the multiplicity effect by testing multiple hypotheses, and second,

the choice of a benchmark requires a test of superior predictive ability which requires testing composite

hypotheses, i.e. (weak) inequalities. Consequently, the asymptotic distribution of these tests is typically

non-standard.

The first approach that we consider is the reality check for data snooping of White (2000) (hereafter RC).

Let us define the loss differential between the benchmark,σ2
t,0, and some rival forecast,σ2

t,k k = 1, ..., m

as

dt,k = L(σ2
t , σ2

t,0) − L(σt, σ
2
t,k) (12)

anddt = (d1,t, ..., dm,t). Provided thatdt is (strictly) stationary, E[dt] is well defined and the null hypoth-

esis of interest takes the form

H0 : max
k

E[dk,t] ≤ 0 (13)

i.e., the benchmark is superior to the best alternative. Clearly, the null hypothesis in (13) is a multiple

hypothesis, i.e., the intersection of the one-sided individual hypotheses E[dt,k] ≤ 0. The RC test statistic

3The sequence ofT parameters is generated using the most recent information,e.g. a rolling sample of fixed sizeT .
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takes the form

RC − T = max
k

(
√

T d̄k), (14)

whered̄k = T−1
∑T

t=1 dt,k.

Given strict stationary ofdt, White (2000) invokes conditions provided in West (1996) that lead to
√

T (d̄−
E[dt])

d→ N(0, Ω). However, (14) has an asymptotic distribution under the null which is unknown and that

depends on the nuisance parameters E[dt] andΩ.4

White (2000) suggests two procedures to obtain the distribution under the null, namely the ‘Monte Carlo

Reality Check’ (simulated inference) and the ‘Bootstrap Reality Check’ (bootstrap inference), see White

(2000) for further details.

Note that, as in Diebold and Mariano (1995), White’s (2000) asymptotics are based on population values.

Using similar arguments as Giacomini and White (2006), Hansen (2005) generalize the procedure to the

comparison of nested models. Using a similar approach, Hansen (2005) proposes a new test for superior

predictive ability (henceforth SPA). The SPA statistic takes the form

SPA − T = max

[

max
k

√
T d̄k√
ω̂k

, 0

]

, (15)

whereω̂k is some consistent estimator ofωk = lim
t→∞

Var(
√

T d̄k). The null distribution of the SPA statistic

is based on
√

T d̄ d→ N(µ̂c, Ω̂), whereµ̂c is a consistent estimator ofµ = E[dt] that conforms with the null

hypothesis. Hansen (2005) also provides a detailed description of the bootstrap scheme used to obtain the

distribution under the null hypothesis.

The SPA test differs from the RC in two ways. First, he proposes a different statistic based on studentized

quantities to reduce the loss of power that the RC can suffer when poor and irrelevant forecasts are consid-

ered. Second, he employs a sample dependent distribution under the null. The latter is based on a procedure

that incorporates additional sample information in order to identify the relevant alternatives. In fact, while

the procedure based on the principle of the least favourableconfiguration to the alternative adopted by

White (2000) implicitly relies on an asymptotic distribution under the null that assumes E[dt,k] = 0 for

all k, Hansen (2005) points out that all negative values of E[dt,k] should be considered because they also

conform with the null. He provides lower and upper bounds to the distribution of (15) corresponding to

a liberal test under the null hypothesis that the models withworse performance than the benchmark are

poor models in the limit and a conservative one under the least favourable configuration to the alternative,

respectively.

Clearly, in many applications the choice of a benchmark may not be obvious or an objective benchmark

may not exist. In other applications a single model that is significantly superior to all the alternatives may

4E[dt] is estimated using the least favorable configuration for thealternative which in this case correspond to E[dt] = 0, i.e., all

alternatives are as good as the benchmark.
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not emerge especially when the set of competing models is large and/or the data may not be sufficiently

informative to give a univocal answer. In these cases, the forecaster may aim to reduce the set of competing

models to a smaller set that is guaranteed to contain the bestforecasting model at a given confidence level.

This approach is known as multiple comparison without control.

Within this category we find the model confidence set (MCS) of Hansen, Lunde, and Nason (2009). The

MCS is a sequential test of equal predictive ability. It differs from the RC and the SPA because it does

not require a benchmark to be specified. It has the additionaladvantage of relying on simple hypotheses

(equalities), allowing to derive standard asymptotics.

Given an initial set of forecasts,M0, the starting hypothesis is that all models inM0 have equal forecasting

performances. The relative performance of each pair of forecasts is measured bydt,k,j = L(σ2
t , σ2

t,k) −
L(σ2

t , σ2
t,j), for all k, j ∈ M0 with k 6= j. Under the assumption thatdt,k,j is stationary, the null

hypothesis of equal predictive ability takes the form

H0 : E[dt,k,j ] = 0 ∀k, j ∈ M0. (16)

If the null of equal predictive ability is rejected at a givenconfidence levelα, then an elimination rule is

called to remove the worst performing model. The equal predictive ability test is then repeated until the

non-rejection of the null, while keeping the confidence level α fixed at each iteration, thus allowing to

construct a(1 − α)-confidence set,M∗ ≡ {k ∈ M0 : E(dt,k,j) ≤ 0 ∀ j ∈ M0}, for the best model(s) in

M0.

Let Lt be the(m×1) vector of sample performancesL(σ2
t , σ2

t,k), k ∈ M andι⊥ the(m×(m−1)) orthog-

onal complement of am-dimensional vector of ones, wherem is the dimension ofM . Then, the vector

ι′⊥Lt can be viewed asm− 1 relevant contrasts as each element can be obtained as a linear combination of

dk,j,t, k, j ∈ M which has mean zero under the null (16). Hence, (16) is equivalent to E[ι′⊥Lt] = 0 and,

under strict stationarity ofdk,j,t, it holds thatT−1/2
∑T

t=1 ι′⊥Lt is asymptotically Gaussian with mean0

and covariance matrixΩ = limt→∞ Var
(

T−1/2
∑T

t=1 ι′⊥Lt

)

. Thus, it seems natural to employ traditional

quadratic-form type of tests as

MCS − TQ = T

(

T−1
T
∑

t=1

ι′⊥Lt

)′

Ω̂+

(

T−1
T
∑

t=1

ι′⊥Lt

)

(17)

and

MCS − TF =
T − q

q(T − 1)
MCS − TQ, (18)

whereΩ̂ is some consistent estimator ofΩ, q = rank(Ω̂) denotes the number of linearly independent

contrasts and̂Ω+ denotes the More-Penrose pseudo-inverse ofΩ̂. The statistic in (17) is asymptotically

χ2
q, whereas (18) is asymptotically Fq,T−q under the null hypothesis, as the subscriptsQ (quadratic) andF

(F-distributed) suggest.
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The main pitfall of these asymptotic tests is that, whenm is large, it might be problematic to obtain a well

conditioned estimate ofΩ. Alternatively, Hansen, Lunde, and Nason (2009) propose three simpler statistics

expressed as functions of studentized quantities. The firststatistic is expressed as a sum of deviations from

the common average (hence the subscript). Under the null hypothesisH0 = E[d̄k] = 0 ∀k ∈ M the

statistic takes the form5

MCS − TD =
1

m

∑

k∈M

t2k, (19)

wheretk =
√

T d̄k/
√

ω̂D
k , k = 1, ..., m, and d̄k = m−1Σj∈M d̄k,j is the contrast of modeli’s sample

loss with respect to the average across all models andd̄k,j = T−1ΣT
t=1dk,j,t is the sample loss differential

between modelsk andj. The varianceŝωD
k are consistent estimators ofωD

k = limt→∞Var(
√

T d̄k). The

remaining two statistics, dubbed range and semi-quadratic, take the form

MCS − TR = max
k,j∈M

|tk,j | and MCS − TSQ =
1

m

∑

k,j∈M

t2k,j (20)

respectively, wheretk,j =
√

T d̄k,j/
√

ω̂R
s , k, j = 1, ..., m k 6= j ands = 1, ..., m(m− 1) and the variance

ω̂R
s is a consistent estimator ofωR

s = limt→∞Var(
√

T d̄k,j).

Note that the distribution of (19) and (20) is non-standard and depend on the nuisance parametersωD
k and

ωR
s , respectively. Hansen, Lunde, and Nason (2009) also provide details on the bootstrap scheme employed

to solve the nuisance parameter problem and obtain the distribution under the null hypothesis.

If the null hypothesis is rejected, then Hansen, Lunde, and Nason (2009) suggest the use of the following

elimination ruleEM = arg max
k∈M

tk which excludes the model with the largest standardised excess loss

relative to the average across models. The iterative testing procedure ends when the first non rejection

occurs, or obviously if all models but one have been recursively eliminated. Finally, the MCS p-value is

equal topi = max(pi−1, p(i)), i = 1, ..., m, wherepi is the p-value of the test under the null hypothesis

H0
Mi , i.e., at theith step of the iteration process. By convention the p-value when there is only one surviving

model ispm = 1.

Interestingly, the SPA and MCS tests are implemented in the free Ox software package MULCOM of

Hansen and Lunde (2010).

Loss functions and the latent variable problem

A critical problem, which characterises the comparison of volatility forecasts, is the fact that the target

variable is latent. Typically, this problem is solved by using a conditionally unbiased (and possibly con-

sistent) ex-post estimator, often referred to as volatility proxy and denoted̂σ2
t . It is worth noting that the

5Note that the null hypothesis is equivalent to (16).
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only property that we require for the volatility proxy is conditional unbiasedness, i.e., Et−1[σ̂
2
t ] = σ2

t .

if not otherwise stated, we assume that at least one conditionally unbiased proxy is available. In some

specific cases we will also require the stronger assumption of consistency or the availability of a vari-

ety of proxies that can be ordered in terms of their level of accuracy. A simple variance proxy com-

monly used in the financial literature is the squared return,although such proxy is known to be extremely

noisy. However, its scarce informative content makes it unsuited for the purpose of assessing the accu-

racy of volatility forecasts, in that an uninformative volatility proxy makes difficult to asses the statisti-

cal relevance of the forecast performances. Other volatility proxies based on realised moments are dis-

cussed in Barndorff-Nielsen and Shephard (2002), Zhang, Mykland, and Ait-Sahalia (2004), Zhou (1996),

Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008) among the others. Range based variance estima-

tors can be found in Parkinson (1980), Garman and Klass (1980) and Brandt and Diebold (2006).

As first noted by Andersen and Bollerslev (1998) and Andersen, Bollerslev, and Meddahi (2005), condi-

tional unbiasedness alone does not suffice to ensure, asymptotically, the same outcome that would be

obtained if the true volatility was observable. It has been shown in Hansen and Lunde (2006), Patton

(2009), Patton and Sheppard (2009) and Laurent, Rombouts, and Violante (2009) that the substitution of

the true volatility by a proxy, that by definition is imperfect, may introduce serious distortions in the or-

dering of volatility forecasts. More formally, given two model based forecasts,σ2
t,k andσ2

t,j , it may be

the case that a given loss functionL(.) is such that the true ordering between modelk and modelj im-

plies E[L(σ2
t , σ2

t,k)] < E[L(σ2
t , σ2

t,j)], while the ordering based on the proxy reveals E[L(σ̂2
t , σ2

t,k)] ≥
E[L(σ̂2

t , σ2
t,j)]. Since the distortion in the ordering does not disappear asymptotically, when the evaluation

is based on a target observed with error the choice of the evaluation criteria becomes critical in order to

avoid a biased outcome. To overcome the problem, these authors define conditions that the loss function

has to satisfy in order to ensure a ranking asymptotically robust to the noise in the proxy and propose a

number of robust functional forms.

Given the latent nature of the variable of interest and sincethe type of evaluation and inference on forecasts

accuracy that we have in mind relies, more or less explicitly, on the ordering implied by a predefined loss

function, e.g., squared, absolute, relative forecast error or yet correlation between forecasts and realisations,

if the ranking is non-robust to the noise in the proxy (i.e. issubject to potential distortions) the inference

on models’ predictive accuracy will be incorrect even if thetesting procedure is formally valid. If instead

the loss function ensures robustness of the ranking, the variability of the volatility proxy is only likely to

reduce the power of the test but not its asymptotic size. See Laurent, Rombouts, and Violante (2009) for

an illustration.

We first consider the evaluation based on the MZ approach. Obviously the latent nature of the target variable

makes the regression in (7) unfeasible. Substituting the true variance by some conditionally unbiased proxy,
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σ̂2
t = σ2

t + λt with Et−1[λt] = 0 and Vart−1[λt] 6= 0 and finite, we can rewrite (7) as

σ̂2
t = a + bσ2

t,k + et, (21)

whereet = λt + ut. Sinceσ̂2
t is a conditionally unbiased estimator of the true variance then (21) yields

unbiased estimates ofa andb.

As mentioned, theR2 of the MZ regression has been used as a criterion for orderingover a set of volatil-

ity forecasts, see Andersen and Bollerslev (1998) and Andersen, Bollerslev, Diebold, and Labys (2003) for

examples. Hansen and Lunde (2006) show that, due to the latent variable problem, this criterion is not

always adequate to the scope and may lead to a perverse outcome. They derive sufficient conditions under

which the ordering of volatility forecasts is unaffected when the true variance is substituted by a proxy.

They establish that theR2 is a valid criterion if Et−1[σ
2
t − σ̂2

t ](∂iφ(σ2
t )/∂(σ2

t )i) = ci for some constant

ci, ∀t = T + 1, . . . , T + T and i ∈ IN and whereφ(.) represents the transformation of the dependent

variable and the regressor, e.g., log, square, square root,etc. This condition validates the use of the MZ

regression in level but also, for example, of the quadratic transformation, i.e.,φ(x) = x2, although in

the latter case, as pointed out by Andersen, Bollerslev, andMeddahi (2005), the quadratic transformation

of an unbiased forecasts will not generally result to be unbiased for(σ̂2
t )2, but rejects, for example, the

log-regression. Analytical examples under different distributional assumptions for the volatility proxy can

be found in Patton and Sheppard (2009).

Given (21), it is also interesting to elaborate on the role played by the level of accuracy of the proxy.

Clearly, the variance of the innovations in (21) depends on the accuracy of the volatility proxy. Thus, if

a high quality proxy is available, the regression parameters are estimated more accurately. Similarly, as

the quality of the proxy deteriorates, theR2 of the regression in (21), Cov(σ̂2
t , σ2

t,k)2/(Var(σ̂2
t )Var(σ2

t,k)),

results penalised. See Andersen and Bollerslev (1998) for an analytical example.

When the ordering is based on a statistical loss function, a sufficient condition to ensure consistency of the

ordering is that∂2L(σ2
t , σ2

t,k)/(∂σ2
t )2 exists and does not depend onσ2

t,k. It follows immediately that many

evaluation criteria commonly used in applied works, e.g., forecast errors of square roots and log transforma-

tions or proportional error loss functions, are rejected whereas the squared forecast error is a valid criterion.

Numerous examples of loss functions violating this condition are discussed by Hansen and Lunde (2006)

and Patton (2009).

Focussing on the univariate dimension, Patton (2009) provides analytical results for the undesirable out-

come that arises when using a loss function that violates Hansen and Lunde’s (2006) conditions, under

different distributional assumption for the returns, different volatility proxies and a number of commonly

used loss functions. Furthermore, building upon Hansen andLunde (2006), he provides necessary and

sufficient conditions on the functional form of the loss function (defined within the class of homogeneous
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statistical loss functions that can be expressed as means ofeach period loss) ensuring consistency of the

ordering when using a proxy. The following family of functions

L(σ̂2
t , σ2

t,k) =



















1
(ξ−1)ξ

[

(σ̂2
t )ξ − (σ2

t,k)ξ
]

− 1
ξ−1 (σ2

t,k)ξ−1(σ̂2
t − σ2

t,k) for ξ 6∈ (0, 1)

σ2
t,k − σ̂2

t + σ̂2
t log σ̂2

t

σ2

t,k

for ξ = 1

σ̂2

t

σ2

t,k

− log σ̂2

t

σ2

t,k

− 1 for ξ = 0

(22)

represents the subset of consistent homogeneous loss functions. The parameterξ represents the degree of

homogeneity and determines the shape of the function: symmetric (ξ = 2) or asymmetric (ξ 6= 2). Note

thatξ = 2 corresponds to the squared forecast error, whileξ > 2 (resp.ξ < 2) implies that over- (resp.

under-) predictions are more heavily penalised.

A generalisation to the multivariate case has been proposedby Patton and Sheppard (2009) and Laurent, Rombouts, and Violante

(2009). The latter also show that, under the higher level assumption of consistency of the volatility proxy,

the distortion introduced in the ordering when using an inconsistent loss function tends to disappear as

the quality of the proxy improves. Since non-robust loss functions might have other desirable properties,

as for example down-weighting extreme forecast errors, they may still be used provided that the volatil-

ity proxy can be assumed to be sufficiently accurate relativeto the degree of similarity between models

performances.

Consistency of the ordering and inference on forecast performances

In this section, using a Monte Carlo simulation devoted to illustrate asymptotics that are solely based on

T → ∞, we assess to what extent the latent variable problem induces distortions and discuss the role of

the quality of the proxy. Although we focus on univariate volatility models, a similar exercise based on the

comparison of multivariate models is presented in Laurent,Rombouts, and Violante (2009).

The forecast performances are measured by the loss functions in Table 1. The MSE and the QLIKE loss

functions represent the robust loss functions as they satisfy Hansen and Lunde’s (2006) condition (column

3) discussed in the previous section. They belong to the family of functions in (22) withξ = 2 and0

respectively. The other two loss functions, namely Log-MSEand MSE-SD, are based on transformations

of the variables of interest. Frequently used in applied work, their use is often justified using the argument

that these transformations avoid an excessive penalisation of models that exhibit few extreme forecast

errors. The violation of Hansen and Lunde’s (2006) condition is shown in column 3.

We generate artificial data at a daily frequency from a non-linear asymmetric GARCH (Engle and Ng,

1993), i.e.

yt = σtzt (23)
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Table 1 Loss functions.

Name L(σ2
t , ht) ∂2L(σ2

t , ht)/(∂σ2
t )2 Status

MSE (σ2
t − ht)

2 2 robust

Log-MSE
(

log(σ2
t ) − log(ht)

)2
2

1−log(σ2

t /ht)

(σ2

t )2
non-robust

QLIKE σ2

t

ht
− logσ2

t

ht
− 1 1

(σ2

t )2
robust

MSE-SD (σt −
√

ht)
2

√
ht

2
√

(σ2

t )3
non-robust

σ2
t = ω + α1(ǫt−1 + γσt−1)

2 + β1σ
2
t−1, (24)

wherezt
i.i.d.∼ N(0, 1) and with parametersω = 0.05, α = 0.05 γ = −0.12 andβ = 0.93. Following

Visser (2010), we also generate intraday returns compatible with model (23)-(24) when aggregated at the

daily frequency by settingzt =
∑N

i=1 zt,i, wherezt,i
i.i.d.∼ N(0, 1/N), which satisfies Var(zt) = 1. The

N intraday returns of dayt are obtained by assuming that the intraday volatility is constant over the day,

i.e.,yt,i = σtzt,i. At the highest frequency, we simulatedN = 256 returns per day. We further aggregate

returns, by summation, at 7 lower frequencies, i.e. 128, 64,32, 16, 8, 4, 2 observations per day.

In this setting, and following Andersen and Bollerslev (1998), we dispose of 9 unbiased proxies of the true

volatility, denotedRVt,N =
∑N

i=1 y2
t,i for N = 256, 128, 64, 32, 16, 8, 4, 2, 1, ordered in terms of their

level of accuracy.

The set of competing models includes, the GARCH (Bollerslev, 1986), the GJR (Glosten, Jagannathan, and Runkle,

1992), the exponential weighted moving average (EWMA) withfixed parameters (J.P.Morgan, 1996),

the alternative GARCH (Alt-GARCH) (Knight and Satchell, 2002) and the non-linear ARCH (NARCH)

(Higgins and Bera, 1992) models. The models are estimated byQMLE using the first 4000 data points at

the daily frequency. 1000 one-step-ahead forecasts are computed using a fixed scheme. The simulations

are based on 1000 replications.6

The underlying ordering implied by a given loss function, whether it is robust or not, is identified by ranking

forecasts with respect to the true variance,σ2
t (indicated byN = ∞ in Figures 2 and 3.

6All programs have been written by the authors using OxMetrics 6 (Doornik, 2009) and G@RCH 6 (Laurent, 2009).
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Figure 2 represents the ranking based on the average sample performances (over the 1000 replications)

implied by the two robust loss functions for the true variance (N = ∞) and various levels of precision

for the proxy (N = 256 to N = 1). The ranking appears stable and loss differentials between models

1
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5

6

NAGARCH

GJR

GARCH

NARCH

EWMA

Alt-GARCH

256∞ 128 64 32 16 8 4 2 1
N
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a) MSE loss function
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N

b) QLIKE loss function

Figure 2: Ranking implied by MSE and QLIKE. Ranking based on avg. performances (left) and avg. loss

differentials from nagarch (right).

remain constant independently of the level of accuracy of the proxy. Thus, the noise in the volatility proxy

is asymptotically irrelevant to the ordering, i.e., the ranking obtained underRVt,N is consistent for the one

under the true, latent, conditional varianceσ2
t , for any value ofN .

When considering the non-robust loss functions the objective bias becomes striking. Indeed, Figure 3

suggests that for non-robust loss functions, inferior models emerge as the quality of the proxy deteriorates.

The relative performance of inferior models begins to improve rapidly and we observe major distortions

at all levels of the ranking. For instance, under the Log-MSE, the EWMA model, which ranks last when

using the true variance, raises to the top of the ranking whenthe proxy used in the evaluation is computed

usingN = 4 (or less) intraday returns, while under the MSE-SD, the Alt-GARCH model raises from the

last to the first position of the ranking when the evaluation is based on the least accurate proxy (N = 1).

In conclusion, for a robust loss function, even when the relative performances are extremely close, the

ordering remains unaffected under a noisy proxy and it is always possible to recover asymptotically the
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Figure 3: Ranking implied by Log-MSE and MSE-SD. Ranking based on avg. performances (left) and

avg. loss differentials from nagarch (right).
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true ranking. For a non-robust loss function, it is possibleto recover this result only if the volatility proxy

is sufficiently accurate relative to the degree of similarity between model performances. However, as the

quality of the proxy deteriorates the relative performances of some models appear to improve with respect

to the others.

Empirical application

Data description

The empirical application is based on the EUR/USD exchange rate. The models’ parameters are esti-

mated using the first 3666 trading days (January 6, 1987 to December 28, 2001). The parameter es-

timates are then used to compute 1-step ahead forecasts for the following 660 trading days (January

2, 2002 to August 26, 2004). The volatility proxy for the evaluation period is the realised variance

of Andersen, Bollerslev, Diebold, and Labys (2003) computed using intra-day returns sampled at the 5-

minute frequency (N = 288). The forecasting models set includes the six specifications used in the

previous section. Model performances are evaluated using two robust loss functions, namely the MSE and

the QLIKE.

Table 2 Sample evaluation of forecasting performances.

MSE

NAGARCH GARCH EWMA Alt-GARCH GJR NARCH

0.0388 0.0393 0.0439 0.0383 0.0392 0.0393

QLIKE

NAGARCH GARCH EWMA Alt-GARCH GJR NARCH

0.0774 0.0799 0.114 0.0750 0.0794 0.0767

The sample evaluation of the six competing models is reported in Table 2. Focusing on the MSE loss func-

tion, the model exhibiting the best sample performance is the Alt-GARCH, followed by the NAGARCH

and the GJR. The worst performing model is the EWMA. A similarranking is obtained when the evaluation

is based on the QLIKE loss function.

The GW tests (with test functionδt = 1) supports the hypothesis of superior predictive accuracy of the

Alt-GARCH with the null hypothesis of zero loss differentials being rejected in favour of this model in
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Table 3 GW test (test functionδt = 1).

MSE

NAGARCH GARCH EWMA Alt-GARCH GJR NARCH

NAGARCH - -2.585 -5.399 1.317 -2.445 -0.984

GARCH - -5.384 2.271 2.916 0.019

EWMA - 4.620 5.403 4.653

Alt-GARCH - -2.129 -1.295

GJR - -0.176

NARCH -

QLIKE

NAGARCH GARCH EWMA Alt-GARCH GJR NARCH

NAGARCH - -3.625 -6.691 2.445 -3.493 0.673

GARCH - -6.692 3.751 4.069 2.164

EWMA - 6.466 6.705 6.638

Alt-GARCH - -3.587 -1.045

GJR - 1.916

NARCH -

Note: Significant values at the 5% confidence level (two-tailed test) in bold indicate the rejection of the null

hypothesis of equal predictive ability. The results suggest a preference for the model reported in the row

(resp. column) if negative (resp. positive).
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Table 4 SPA test.

MSE QLIKE

Benchmark pl pc pu pl pc pu

NAGARCH 0.12 0.21 0.35 0.03 0.03 0.04

GARCH 0.01 0.01 0.02 0.00 0.00 0.00

EWMA 0.00 0.00 0.00 0.00 0.00 0.00

Alt-GARCH 0.58 0.94 0.97 0.49 0.83 0.96

GJR 0.04 0.04 0.06 0.00 0.00 0.00

NARCH 0.16 0.16 0.23 0.17 0.26 0.37

Note: P-values in bold indicate the non-rejection of the SPAnull hypothesis for the corresponding

benchmark.pl andpu denote respectively the lower and the upper bounds for the consistent p-value

(pc).

Table 5 MCS test.

MSE QLIKE

M0 TR TD TSQ TR TD TSQ

NAGARCH 0.22 0.32 0.18 0.17 0.06 0.05

GARCH 0.01 0.06 0.01 0.00 0.00 0.00

EWMA 0.01 0.00 0.00 0.00 0.00 0.00

Alt-GARCH 1.00 1.00 1.00 1.00 1.00 1.00

GJR 0.03 0.17 0.09 0.00 0.01 0.00

NARCH 0.22 0.32 0.18 0.29 0.29 0.29

Note: The models corresponding to the figures in bold represent the MCS at the 5% confidence level.
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three cases and non-rejected in two. The results also suggest a preference for the NAGARCH. When we

consider the QLIKE loss function the results are similar andthe test suggests a preference for Alt-GARCH,

NAGARCH but also NARCH. However, as mentioned above, interpreting jointly results based on the

pairwise approach may be misleading. When applying the SPA test, we find that 3 models (Alt-GARCH,

NAGARCH and NARCH) under the MSE loss function and 2 models (Alt-GARCH and NARCH) under

the QLIKE loss function cannot be rejected as the one outperforming all the others.

Finally, the ambiguous result of the GW test, corroborated by the outcome of the SPA test which does not

provide a clear identification of a single superior model, supports the use of inference based on the more

general MCS. Indeed, the MCS finds different sets depending on the loss function and the statistic used.

When performances are evaluated using the MSE loss function, underTR andTSQ the MCS consists of the

Alt-GARCH, the NAGARCH and the NARCH while underTD the MCS appears to be more conservative,

including all models except the EWMA. The results appear to be somewhat homogeneous when using

the QLIKE loss function. In this case the three statistics deliver the same MCS which consists of the

Alt-GARCH, the NAGARCH and the NARCH models.

Thus, given the composition of the MCS we can conclude that more sophisticated and flexible models

are required to fit the dynamics of the conditional variance of the EUR/USD, with emphasis given to the

non-linear relationship between conditional variance andinnovations.

Conclusion

In this article we provide an overview of methods for volatility forecast evaluation and compari-

son. We discuss a large variety of methodologies that can be classified in three groups, namely

methods for the evaluation of the forecasting accuracy of single forecast, methods for pairwise

comparison and methods for multiple comparison.

We pay particular attention to the problems that arise due to the latent nature of the conditional

variance. In fact, being the variance unobservable the actual evaluation of the volatility forecasts,

usually involving a loss function, requires the use of some proxy. Since this substitution may

introduce dramatic distortions in the ordering between forecasts under evaluation, which can be

avoided by an appropriate choice of the loss function, we elaborate on the admissible functional

form of the loss function and discuss some examples. Using artificial data, we illustrate the danger

of combining an inconsistent loss function and a noisy proxy of the true volatility. In this article we

focus on methodologies for forecasts evaluation and comparison where the forecast accuracy is

measured by a statistical criterion, i.e., means of functions of predictions and predictions errors.

At some point, the forecaster may be interested in the economic evaluation of the forecasts,

for instance by means of an utility or profit function or yet any other economically meaningful

application-specific evaluation criteria. However, to date a comprehensive investigation of the
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properties of economic loss function has not been addressed yet. In particular the robustness of

the ordering when the evaluation is based on an imperfect volatility proxy remains an open issue

and should be further investigated.
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