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Sébastien Laurent † and Shuping Shi‡

†Aix-Marseille University
‡Macquarie University

May 10, 2020

Abstract

Deviations of asset prices from the random walk dynamic imply the predictability of asset re-
turns and thus have important implications for portfolio construction and risk management. This
paper proposes a real-time monitoring device for such deviations using intraday high-frequency
data. The proposed procedures are based on unit root tests with in-fill asymptotics but ex-
tended to take the empirical features of high-frequency financial data (particularly jumps) into
consideration. We derive the limiting distributions of the tests under both the null hypothesis
of a random walk with jumps and the alternative of mean reversion/explosiveness with jumps.
The limiting results show that ignoring the presence of jumps could potentially lead to severe
size distortions of both the standard left-sided (against mean reversion) and right-sided (against
explosiveness) unit root tests. The simulation results reveal satisfactory performance of the tests
even with data from a relatively short time span. As an illustration, we apply the procedure
to the Nasdaq composite index at the 10-minute frequency over two periods: around the peak
of the dot-com bubble and during the 2015-2106 stock market sell-off. We find strong evidence
of explosiveness dynamics in asset prices in late 1999 and mean reversion in late 2015. We also
show that accounting for jumps when testing the random walk hypothesis on intraday data is
empirically relevant and that ignoring jumps can lead to different conclusions.

Keywords: Unit root test, random walk, in-fill asymptotic, jumps, GARCH, periodicity, mi-
crostructure noise
JEL classification: C12, C22.

1 Introduction

The issue of whether stock prices follow a random walk or a mean-reverting process received con-
siderable attention at the end of the 20th century. Evidence of mean reversion in stock prices or
autocorrelation in long-horizon returns have been documented in the stock prices of the US (Fama
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and French, 1988; Poterba and Summers, 1988; Lo and MacKinlay, 1988)1 and many other coun-
tries (Richards, 1997; Balvers et al., 2000; Chaudhuri and Wu, 2003). There is also a burgeoning
research program searching for evidence of asset prices deviating to an explosive regime (viz. spec-
ulative bubbles). It is argued that asset prices are explosive (Diba and Grossman, 1988) in the
presence of speculative bubbles, as opposed to being a random walk under normal market condi-
tions. With recently developed bubble identification techniques, the literature presents abundant
evidence of explosiveness in asset prices.2 It is important to note that the empirical evidence of both
mean reversion and explosiveness of asset prices is observed from low-frequency (weekly, monthly
or quarterly) data.

Several trading strategies have been developed to exploit the mean-reverting behavior (Balvers
et al., 2000; Gatev et al., 2006; Serban, 2010) and the explosive dynamics (Brooks and Katsaris,
2005; Guenster and Kole, 2013; Milunovich et al., 2017) of asset prices. These trading strategies are
shown to outperform the buy-and-hold strategy, with or without the consideration of transaction
costs. They are, however, designed for low-frequency trading, which often requires a long holding
period to be profitable. The readily available high-frequency financial data provide a strong motive
for investors to extend those strategies to high-frequency settings and trade more frequently. The
profitability of such high-frequency trading will rely critically upon having a timely and accurate
identification technique for such deviations.

Moreover, deviations from the random walk imply the presence of a nonzero drift in a linear drift
diffusion (e.g., Ornstein-Uhlenbeck) process. Laurent and Shi (2020) show that the presence of a
nonzero drift results in the overestimation of the integrated variance using various realized volatility
estimators (including jump robust estimators) and a power loss for jump detection procedures. As
a remedy, they suggest using centered returns for the calculation of integrated volatilities and the
construction of the jump test statistics. An effective tool for identifying such deviations in the
high-frequency regime will, therefore, be an essential step for statistically documenting empirical
evidence of nonzero drifts in the price dynamics of various assets and hence justifying the need for
handling drifts with care.

This paper addresses this need by providing a real-time monitoring technique for deviations of
asset prices from the random walk using high-frequency data. The real-time monitoring procedure
arises from the unit root testing literature,3 which started in the late 1970s and was catalyzed by
the work of Nelson and Plosser (1982). The view that most economic time series are characterized
by stochastic trends has since become prevalent. Despite the popularity of unit root testing, there is
a profound concern regarding structural breaks caused by changes in institutional or policy settings
(Kim et al., 1991). At the turn of the 20th century, an enormous amount of effort was devoted to
tackling this issue, considering different break types (such as breaks in the null or in the alternative,
breaks in the mean, trend, or slope, and sudden or gradual breaks), known or unknown break dates,
and the number of breaks.4 Although one could employ a procedure to endogenously determine the
break dates, some assumptions on the nature of the break (e.g., break numbers or break in mean,
slope or trend) must be made for practical implementation. Those assumptions are often critical

1This finding is, however, subject to criticisms. See Lo and MacKinlay (1988); Richardson (1993); McQueen (1992);
Kim et al. (1991); Miller et al. (1994).

2See, for example, Brooks and Katsaris (2005); Phillips et al. (2011); Phillips and Yu (2011); Homm and Breitung
(2012); Phillips and Yu (2013); Phillips et al. (2015a); Milunovich et al. (2017); Narayan et al. (2016); Shi and Song
(2016); Harvey et al. (2019).

3See, for example, Dickey and Fuller (1979, 1981); Said and Dickey (1984); Phillips (1987a); Phillips and Perron
(1988); Kwiatkowski et al. (1992); Schmidt and Phillips (1992).

4See Perron (1989, 1990); Banerjee et al. (1992); Perron (1997); Lumsdaine and Papell (1997); Vogelsang and
Perron (1998); Clemente et al. (1998); Lee and Strazicich (2001); Zivot and Andrews (2002); Lee and Strazicich
(2003), among others.
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and could lead to distinct results from those obtained under other choices. The unsatisfactory
performance of those tests, therefore, prevents their widespread application.

The technique proposed here utilizes intraday data from a relatively short time interval, which
is in sharp contrast to the existing literature that searches for evidence of deviations with low-
frequency data and usually over a long time span. Therefore, unlike conventional unit root tests,
structural breaks are of less concern for the new test. Additionally, the use of intraday data could
potentially enable more effective detection of such deviations. The unit root test for high-frequency
data employs in-fill asymptotics, where the sample period N is fixed, and the sampling interval ∆
converges to zero. The analysis of a fixed time span and fine sampling intervals is typical in the
high-frequency literature (e.g., Merton, 1980; Andersen and Bollerslev, 1998a). Moreover, in-fill
asymptotics have been shown to provide better approximations to their finite sample counterparts
(Yu, 2014; Zhou and Yu, 2015; Jiang et al., 2017, 2018) than long-span (N → ∞) and double
asymptotics (N →∞ and ∆→ 0).

Although the in-fill asymptotic of unit root tests was developed as early as 1987 (Phillips,
1987a; Perron, 1991), there have been very few attempts at applying the test to high-frequency
data over the past three decades. This is partially due to the paper by Shiller and Perron (1985),
who show through simulations that the power of the conventional unit root tests increases with the
time span but not with sampling frequency. More important, bringing unit root tests to the high-
frequency data is nontrivial. There are many stylized facts of high-frequency finance data, namely,
jumps (Andersen et al., 2007a; Lee and Mykland, 2008), conditional heteroskedasticity (Engle, 1982;
Bollerslev, 1986; Taylor, 1994), microstructure noise (Aı̈t-Sahalia et al., 2005; Ait-Sahalia and Yu,
2009), and intraday periodicity (Taylor and Xu, 1997; Andersen and Bollerslev, 1997), which may
potentially affect the performance of the test.

The main focus of this paper is on the effect of jumps on unit root tests. The presence of
jumps in high-frequency data has now been widely recognized in the literature.5 In the empirical
application, we identified 149 jumps in the 10-minute Nasdaq log prices around the peak of the dot-
com bubble (from May 1999 to June 2000) and 91 jumps from May 2015 to Jan 2016, with their
locations displayed in Figure 8. Some of the jumps identified are of a very large magnitude. The
occurrence of jumps might be due to macroeconomic news and company-specific announcements
such as share buybacks (Bajgrowicz et al., 2015; Lee, 2011). We show both asymptotically and by
simulations that ignoring the presence of jumps leads to a severe size distortion for the Dickey-Fuller
test (depending on the number, location, and magnitude of jumps).

The proposed procedures take the presence of jumps into consideration by including a set of
dummies in the regression model. We provide the limiting distributions of two test statistics,
denoted by DF J and DF (J), under both the null of a random walk and the alternative of mean
reversion or explosiveness (with or without jumps). We consider two versions of these tests: an
unfeasible one that relies on the true jump occurrences and a feasible one that relies on a test to
identify jumps. We show the asymptotic equivalence of the unfeasible and feasible tests.

In the simulations, we show that in the presence of jumps, the conventional unit root test (which
ignores jumps) is undersized for the mean reversion alternative and oversized for the alternative of
an explosive process. In contrast, the new tests, which account for the presence of jumps, have
satisfactory finite sample performance. The empirical sizes are close to the nominal sizes, while
the powers of the new tests are reasonably high even for very small deviations from the random
walk. Moreover, the presence of conditional heteroskedasticity, intraday periodicity in volatility
and microstructure noise does not affect the performance of the tests when the test window is one
quarter or longer and the sampling frequency is 10 minutes or lower. Furthermore, we show that the

5See Mancini (2011) for a review on jumps in high-frequency financial data.
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right-sided DF (J) test has a high probability of rejecting the null against the explosive alternative
when the process is stationary (but very close to a random walk) and N is relatively low. Therefore,
we recommend the use of the DF J test for empirical applications.

Finally, we apply the DF Ĵ test (a feasible version of DF J), along with the conventional unit
root test, to 10-minute log prices of the Nasdaq composite index around the peak of the dot-com
bubble (1999-2000) and the 2015-2016 sell-off periods. We find cases where different conclusions

are drawn from DF and DF Ĵ . We attribute these differences to the lack of power of the left-sided
DF test and the oversize of the right-sided DF test when jumps are ignored. Moreover, there
are several interesting empirical findings. First, we find evidence of deviations from the random
walk hypothesis to the explosive direction in late 1999 and to the stationary direction in late 2015.
Second, our findings show that the dynamic of the log Nasdaq price switches back to a random walk
(from being explosive) as it approaches the peak of the bubble episode. This finding suggests that

the DF Ĵ test could potentially enable investors to withdraw from the market before it collapses.
Third, while the dot-com bubble bursts in a random walk fashion, the stock market crash in late
2015 follows a mean-reverting pattern. The last finding provides empirical support for the mildly
stationary process of Phillips and Shi (2018) and the random drift martingale process of Phillips
and Shi (2019) for crashes.

This paper is closely related to the work of Tao et al. (2019), Kim and Park (2019), and Jiang
et al. (2018). Tao et al. (2019) propose new tests for the identification of extreme behaviors in asset
prices using high-frequency data. Kim and Park (2019) proposes using the conventional unit root
tests for the identification of mean-reverting behaviors and applying unit root tests to Lamperti-
transformed data series to distinguish stationary and nonstationary processes. Jiang et al. (2018)
analyzes the behavior of the KPSS stationarity test in a continuous-time framework. However, none
of these papers considers the impact of the high-frequency features of financial data (especially
jumps) on test performance.

The remainder of the paper is organized as follows. Section 2 revisits the conventional unit
root test with in-fill asymptotics under both the null and the alternatives. Section 3 introduces the
new unit root tests for intraday high-frequency data, provides the limiting distributions of the new
test statistics under both the null and the alternative, and discusses the jump detection procedure.
Monte Carlo simulations are conducted in Section 4. An empirical illustration using the Nasdaq
stock index is proposed in Section 5. Section 6 concludes the paper. All proofs are collected in the
appendix.

2 Econometric Method

Consider a set of equally spaced data sampled at an interval ∆. The logarithmic price is denoted
by yi∆ with i = {1, . . . , T}. The T observations span across N = T∆ days. The aim is to detect
any deviations of yi∆ from the random walk using intraday data from a fixed time period (N days).
Jumps are not considered here but will be introduced in the next section.

2.1 Hypotheses and Model Specifications

The null hypothesis of a unit root is specified as

yi∆ = y(i−1)∆ + σ
√

∆εi∆, (1)

with initial value y0, where σ is a constant and εi∆
i.i.d∼ N (0, 1). The alternative hypothesis is

yi∆ = α0 + β0y(i−1)∆ + λ0εi∆, (2)
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where α0 = µ
(
1− eθ∆

)
with µ and θ being constant, β0 = eθ∆ and λ2

0 = σ2

2θ

(
e2θ∆ − 1

)
. Model (2)

is the exact discrete-time solution of the drift-diffusion process

dyt = θ (yt − µ) dt+ σdwt, (3)

where wt is the standard Wiener process. It reduces to Model (1) when θ = 0. When θ 6= 0, the
autoregressive coefficient

β0 = 1 + θ∆ +O
(
∆2
)

converges to unity at a rate of ∆ = N/T . Given that N is fixed, the process is equivalent to the
local-to-unity process of Phillips (1987b) in both the explosive (when θ > 0) and mean reversion
(when θ < 0) directions.6

The regression model used to test the null hypothesis of a unit root includes an intercept and is
specified as follows:

yi∆ = α+ βy(i−1)∆ + vi∆, (4)

where vi∆ is the error term. The Dickey-Fuller statistic is

DF =
(
β̂ − 1

)T
∑T

j=1 y
2
j∆ −

(∑T
j=1 y(j−1)∆

)2

∑T
j=1

(
yj∆ − α̂− β̂y(j−1)∆

)2


1/2

, (5)

where α̂ and β̂ represent the OLS estimates of α and β.
Next, we provide the asymptotic properties of the unit root test under both the null and the

alternative. The proofs of Lemma 2.1, Lemma 2.2, Theorem 2.1, and Theorem 2.2 are collected in
the online supplement.

2.2 Asymptotics Under the Null

Lemma 2.1 Under the null hypothesis (1), as ∆→ 0 (T →∞ with N fixed):

(a) yT∆ =⇒ σN1/2 (w1 + γ) ≡ σN1/2Ψ1;

(b) T−1
T∑
j=1

yj∆ =⇒ σN1/2

(∫ 1

0
wsds+ γ

)
≡ σN1/2Ψ2;

(c) T−1
T∑
j=1

y2
j∆ =⇒ σ2N

(∫ 1

0
w2
sds+ γ2 + 2γ

∫ 1

0
wsds

)
≡ σ2NΨ3;

(d) T−1/2
T∑
j=1

y(j−1)∆εj∆ =⇒ 1

2
σN1/2

(
w2

1 + 2γw1 − 1
)
≡ σN1/2Ψ4;

with ws being the standard Wiener process with variance s and γ = y0

N1/2σ
.

6Kim and Park (2019) show that for the drift diffusion process (3), (non-)mean reversion is equivalent to
(non-)stationarity. Furthermore, they consider a general null recurrent diffusion process and show that even un-
der this general model setting, one could employ unit root tests to identify mean-reverting behaviors. However, mean
reversion is not equivalent to stationarity in the general setting. A process can be nonstationary and mean reverting.
Testing for stationarity versus nonstationarity can be achieved by employing the Lamperti transformation before
conducting unit root tests.
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Theorem 2.1 Under the null hypothesis (1) and with regression model (4), when the sampling
interval ∆→ 0 and the time span N is fixed, the DF test statistic

DF
L→ −Ψ2w1 + Ψ4(

Ψ3 −Ψ2
2

)1/2 =
1
2

(
w2

1 − 1
)
− w1

∫ 1
0 wsds[∫ 1

0 w
2
sds−

(∫ 1
0 wsds

)2
]1/2

≡ Υ1.

The results in Lemma 2.1 are identical to those in Theorem 6.2 of Phillips (1987a). It is repeated
here for ease of comparison. Although the asymptotics of the four quantities in Lemma 2.1 depend
on the nuisance parameter γ, the test statistic is asymptotically pivotal. Furthermore, the limiting
distribution of DF is identical to its long-span asymptotic (see Hamilton, 1994 for a book reference).
This is in sharp contrast to the in-fill limits provided by Phillips (1987a) and Perron (1991), which
depend on the nuisance parameter γ. This difference arises from the fact that our regression model
includes an intercept, whereas there is no intercept in that of Phillips (1987a) and Perron (1991).
Suppose that we did not include an intercept in the regression model as in Phillips (1987a) and
Perron (1991). Under the null hypothesis of (1), the test statistics

DF
L→

1
2

(
w2

1 − 1
)

+ γw1[
γ2 +

∫ 1
0 w

2
sds+ 2γ

∫ 1
0 wsds

]1/2
.

The proof follows directly from that of Lemma 2.1 and is omitted for brevity.

Remark 2.1 The null specification (1) can be generalized to allow for an asymptotically negligible
drift such that

yi∆ = µ∆η + y(i−1)∆ + σ
√

∆εi∆,

with µ being a constant and η > 1. The inclusion of the small drift µ∆η does not have any impact
on the limiting properties of the DF statistic.

2.3 Asymptotics under Local Alternatives

By recursive substitution, Model (2) becomes

yi∆ = α0
1− eiθ∆

1− eθ∆
+ λ0

i∑
j=1

e(i−j)θ∆εj∆ + eiθ∆y0. (6)

The stochastic component converges to an Ornstein-Uhlenbeck (OU) process in the limit, i.e.,

T−1/2
i∑

j=1

e(i−j)θ∆ε∆j =⇒ Jc (r) =

∫ r

0
exp (c (r − s)) dws with r = i/T and c = θN .

Lemma 2.2 Under the alternative of (2), as ∆→ 0 (T →∞ with N fixed),

(a) yT∆ =⇒ σN1/2 [δ (1− ec) + Jc (1) + ecγ] ≡ σN1/2Ξ1;

(b) T−1
T∑
i=1

yi∆ =⇒ σN1/2

[
δ +

∫ 1

0
Jc (r) dr + (γ − δ) e

c − 1

c

]
≡ σN1/2Ξ2;

(c) T−1
T∑
i=1

y2
i∆ =⇒ σ2N

[
δ2 + 2δ (γ − δ) e

c − 1

c
+ (γ − δ)2 e

2c − 1

2c
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+

∫ 1

0
Jc (r)2 dr + 2δ

∫ 1

0
Jc (r) dr + 2 (γ − δ)

∫ 1

0
ecrJc (r) dr

]
≡ σ2NΞ3;

(d) T−1/2
T∑
i=1

y(i−1)∆εi∆ =⇒ σN1/2

2

(
Ξ2

1 − γ2 − 2cΞ3 − 1 + 2cδΞ2

)
≡ σN1/2Ξ4

with Jc (r) =
∫ r

0 exp (c (r − s)) dws, c = θN , γ = y0

N1/2σ
, and δ = µ

N1/2σ
.

Lemma A.1 of Perron (1991) is a special case of Lemma 2.2 with µ = 0. The results in Lemma
2.2 are identical to those reported in Lemma 8.1 of Zhou and Yu (2015).

Theorem 2.2 Under the alternative hypothesis (2), as ∆ → 0 (T → ∞ with N fixed), the DF
statistic has the following limit distribution:

DF
L→ −Ξ2w1 + Ξ4(

Ξ3 − Ξ2
2

)1/2 + c
(
Ξ3 − Ξ2

2

)1/2 ≡ ΥA
1 ,

where Ξ2,Ξ3 and Ξ4 are defined in Lemma 2.2.

The limiting distribution ΥA
1 is continuous with respect to θ. It converges to Υ1 as θ → 0. The

limiting distribution of the DF statistic (and hence the asymptotic power of the test) depends on
the model parameters y0, N, µ, θ, and σ.

Figure 1: The asymptotic distributions (kernel densities) of the DF test statistic under the null Υ1

and the alternatives ΥA
1 for N = 20 and 60. The value of θ ranges from −0.02 to 0.02 with an

increment of 0.0001. We set y0 = 6.959, µ = 0.0002 and σ = 0.009.

(a) N = 20 (b) N = 60

Figure 1 graphs the asymptotic distributions (kernel densities) of the DF statistic for various
settings of θ with N = {20, 60}. We allow θ to take values from −0.02 to 0.02 with an increment of
0.0001. The initial value y0 = 6.959 is the log price of the Nasdaq stock market on January 2, 1996.
The parameter σ = 0.009, which is the average of the estimated spot volatility for the 10-minute
Nasdaq log price from January 2, 1996 to December 8, 2017. The time period N equals one month
(N = 20) and one quarter (N = 60). The distributions are obtained from 10,000 replications,
approximating the Wiener process by partial sums of standard normal variates with 10,000 steps.
The parameter µ is set to 0.0002. The case of θ = 0 corresponds to the null distribution Υ1.

First, ΥA
1 is a nonlinear function of θ. When N = 20, the shape resembles a ‘swimmer’ with

the peak of the limiting distribution of θ = 0 being the head, those of θ > 0 (resp. θ < 0) forming
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the right (resp. left) shoulder and arm. The right shoulder and arm are always behind the head,
reaching back. That is, when θ > 0, the distribution moves sequentially to the right as θ increases,
implying a rising power of the right-tailed unit root test. When θ < 0, the limiting distribution
changes in a nonmonotonic fashion. It moves first to the right of the null distribution and then
gradually to the left as θ deviates further away from zero. The nonmonotonicity occurs when θ is
very close to zero (viz. the left shoulder). This implies that when θ < 0 but very close to zero, the
right-tailed unit root test rejects the null hypothesis too often (finding evidence of spurious explosive
dynamics), while the left-tailed unit root test has no power against θ < 0. This problem disappears
when the left arm is ahead of the head (i.e., θ moves further away from zero). Furthermore, from
panel (b), the distribution of the DF statistic moves rapidly to the right (resp. left) for positive
(resp. negative) θs as the time period N rises to 60. The rate of divergence is faster on the right
than on the left.

Remark 2.2 Under the data generating process (2) and a double asymptotic scheme (N →∞ and
∆→ 0),

DF ∼

 eθN
√

θ
2

1
σ |y0 − µ+ σZ1| → +∞ if θ > 0

N1/2 θ
σ

(
− 1

2θ

)1/2 → −∞ if θ < 0
,

where Z1 ∼ N
(
0, 1

2θ

)
. The proof follows directly from the results of Wang and Yu (2016). See

Appendix B for details. The DF statistic diverges to positive and negative infinity when θ > 0 and
θ < 0, respectively. This result suggests that one could obtain the asymptotic consistency of the
test by allowing the time period N go to infinity. Furthermore, when θ > 0, the divergence rate is
exponential, i.e., Op

(
eθN

)
. The divergence rate of the DF statistic is Op

(
N1/2

)
when θ < 0, which

is slower than that of DF when θ > 0. This result is consistent with our observation from Figure 1.

3 Unit Root Tests for High-frequency Data

As highlighted in Bauwens et al. (2012), empirical studies have shown that stochastic diffusion
models driven by Brownian motion fail to explain some characteristics of asset returns. One of the
most important features of financial assets is the presence of discontinuities in prices, also called
jumps. See Andersen et al. (2007a) and Lee and Mykland, 2008, among others. Several jump-
diffusion processes have been proposed in the literature to account for the presence of either small
(infinite activity) jumps or large finite activity jumps. See, for example, Merton (1976); Ahn and
Thompson (1988); Kou (2002); Mancini (2011).

Here, jumps in log prices are additive and governed by a compound Poisson process Jt. The log
prices

dyt = θ (yt − µ) dt+ σdwt + dJt. (7)

The exact discrete time solution of (7) is

yi∆ = α0 + β0y(i−1)∆ + λ0εi∆ +

Ki∆∑
k=K(i−1)∆

eθ(i∆−τk)ξk, (8)

where α0, β0, and λ 0 are identical to those in (2), Ki∆ is the total number of jumps within the
interval [0, i∆] and follows a Poisson process with intensity λ, and τk is the location of the kth

jump. The jump size {ξk} is a sequence of independent random variables governed by law f ,
e.g., the lognormal distribution (Merton, 1976) or double exponential distribution (Kou, 2002).
Although the jump component is stochastic under (7), it is sufficient for the purposes of this paper
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to assume that the number, locations, and sizes of the jumps are deterministic. This assumption is
analogous to that for bubble generating processes. While Evans (1991) consider a data generating
process where the collapse of bubbles is governed by a Bernoulli process, Phillips et al. (2011) and
Phillips et al. (2015a,b) assume deterministic switching points of bubbles for their analysis of bubble
origination and termination dates.

Assume there are K jumps within the sample period. The locations and magnitudes of the
jumps are denoted by τk = brkT c and φk, respectively, with k = 1, . . . ,K and b.c signifying the
integer of the argument. The jump dummy Iki∆ takes value one at period τk when the kth jump

occurs and zero otherwise so that
∑T

i=1 I
k
i∆ = 1 (for k = 1, . . . ,K). The null hypothesis of a unit

root with jumps is

yi∆ =
K∑
k=1

φkI
k
i∆ + y(i−1)∆ + σ

√
∆εi∆, (9)

while under the alternative,

yi∆ = α0 +

K∑
k=1

φkI
k
i∆ + β0y(i−1)∆ + λ0εi∆. (10)

In the special case where the sizes of the jumps are identical, i.e., φ1 = · · · = φK = φ, the jump
component

K∑
k=1

φkI
k
i∆ = φ

K∑
k=1

Iki∆ = φI∗i∆ with I∗i∆ =
K∑
k=1

Iki∆.

The dummy variable I∗i∆ takes value one when there is a jump and zero otherwise (i.e.,
∑T

i=1 I
∗
i∆ =

K). By splitting the jump indicator I∗i∆ into k orthogonal variables
{
Iki∆
}K
k=1

, we therefore allow
for different jump sizes.

We provide the limiting properties of yT∆,
∑T

i=1 yi∆,
∑T

i=1 y
2
i∆, and

∑T
i=1 y(i−1)∆εi∆ under the

null and the alternative in Lemma 3.1 and 3.2, respectively. The proofs of these two lemmas are
collected in the appendix.

Lemma 3.1 Under the null hypothesis (9), as ∆→ 0 (T →∞ with N fixed):

(a) yT∆ =⇒ σN1/2

(
Ψ1 +

K∑
k=1

ζk

)
≡ σN1/2Ψ̃1;

(b) T−1
T∑
i=1

yi∆ =⇒ σN1/2

[
Ψ2 +

K∑
k=1

ζk (1− rk)

]
≡ σN1/2Ψ̃2;

(c) T−1
T∑
i=1

y2
i∆ =⇒ σ2N

[
Ψ3 + ∆1 + 2

K∑
k=1

ζk

∫ 1

rk

wsds+ 2γ

K∑
k=1

ζk (1− rk)

]
≡ σ2NΨ̃3;

(d) T−1/2
T∑
i=1

y(i−1)∆εi∆ =⇒ σN1/2

2

[
Ψ̃2

1 − γ2 − 1−
K∑
k=1

ζ2
k − 2

K∑
k=1

ζk (wrk + γ + ∆2)

]
≡ σN1/2Ψ̃4,

where ws is the standard Wiener process with variance s ∈ [0, 1], γ = y0

N1/2σ
, ζk = φk

σN1/2 ,

∆1 =

{
ζ2

1 (1− r1) if K = 1∑K−1
k=1 (rk+1 − rk)

(∑k
j=1 ζj

)2
+ (1− rK)

(∑K
j=1 ζj

)2
if K > 1

,
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and

∆2 =

{
0 if K = 1∑k−1

j=1 ζj if K > 1
.

We denote the limiting properties of the above four quantities under the null without jumps (1)
by Ψ (with their exact forms in Lemma 2.1) and those under the null with jumps (9) by Ψ̃. It is
evident from Lemma 3.1 that the jump component

∑K
k=1 φkI

k
i∆ has an asymptotic impact on those

four quantities. There are additional terms in Ψ̃, relating to the number of jumps K, the jump sizes
φk, and the (fractional) location of the jumps rk.

7

Lemma 3.2 Under the alternative model (10), as ∆→ 0 (T →∞ with N fixed):

(a) yT∆ =⇒ σN1/2

[
Ξ1 +

K∑
k=1

ζke
(1−rk)c

]
≡ σN1/2Ξ̃1;

(b) T−1
T∑
i=1

yi∆ =⇒ σN1/2

{
Ξ2 +

1

c

K∑
k=1

ζk

[
e(1−rk)c − 1

]}
≡ σN1/2Ξ̃2;

(c) T−1
T∑
i=1

y2
i∆ =⇒ σ2N

{
Ξ3 + ∆3 +

1

c
δ

K∑
k=1

ζk

[
2ec(1−rk) − 2− ec(2−rk) + erkc

]
+2

K∑
k=1

ζk

∫ 1

rk

ec(r−rk)Jc (r) dr +
1

c
γ

K∑
k=1

ζke
rkc
[
e2c(1−rk) − 1

]}
≡ σ2N Ξ̃3;

(d) T−1/2
T∑
i=1

y(i−1)∆εi∆ =⇒ σN1/2

2

{
Ξ̃2

1 − γ2 − 2cΞ̃3 − 1 + 2cδΞ̃2 −
K∑
k=1

ζ2
k

−2
K∑
k=1

ζk [δ (1− erkc) + Jc (rk) + erkcγ + ∆4]

}
≡ σN1/2Ξ̃4.

where c = θN , δ = µ
N1/2σ

, and

∆3 =

 ζ2
1
e2c(1−r1)−1

2c if K = 1∑K−1
k=1

(∑k
j=1 ζje

−rjθ
)2
e2rkθ e

2θ(rk+1−rk)−1
2c +

(∑K
j=1 ζje

−rjθ
)2
e2rKθ e

2θ(1−rK)−1

2c if K > 1
,

∆4 =

{
0 if K = 1∑k−1

j=1 e
(rk−rj)θζj if K > 1

.

Analogously, we use Ξ to denote limiting properties under (2) and Ξ̃ for those under (10). As in
Lemma 3.1, the impact of the jump component

∑K
k=1 φkI

k
i∆ under the alternative does not disappear

in the limit. We observe additional terms in Ξ̃, which depend on the three jump characteristics
(i.e., K, φK , and rk) as well as θ and N through the parameter c.

3.1 Unit Root Test with Known Jump Location

Assume for now that the number of jumps and their locations are known. This assumption will be
relaxed in Section 3.2. The regression model used to test the null hypothesis of a random walk with

7We assume that there is a finite number of jumps and that the magnitude of the jumps is finite. One could
potentially relax this assumption to allow for an infinite number of jumps K or the magnitude of jumps φk to go to
infinity. We leave this extension to future research.
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jumps is

yi∆ = α+
K∑
k=1

φkI
k
i∆ + βy(i−1)∆ + vi∆. (11)

We use the notation ˜ to denote the OLS estimates of the model coefficients in (11). The corre-
sponding test statistic, denoted DF J , is

DF J =
(
β̃ − 1

) T
∑T

i=1 y
2
i∆ −

(∑T
i=1 y(i−1)∆

)2

∑T
i=1

(
yi∆ − β̃y(i−1)∆ − α̃−

∑K
k=1 φ̃kI

k
i∆

)2


1/2

.

The limiting distributions of the DF J statistic under both the null and the alternatives are
provided below. Moreover, we show the limiting distributions of the DF statistic under the null
of (9) and the alternative of (10) (i.e., one ignores the presence of jumps and applies the standard
unit root test).

3.1.1 Asymptotics of the DF J Statistic

Theorem 3.1 Under the null hypothesis of a random walk with jumps (9), the OLS estimators
have the following limiting properties: as ∆→ 0 (T →∞ with N fixed),

T 1/2
(
φ̃k − φk

)
=⇒ N(0, σ2N);

σ̃2
v → σ2N,

where σ̃2
v =

∑T
i=1

(
yi∆ − β̃y(i−1)∆ − α̃−

∑K
k=1 φ̃kI

k
i∆

)2
. The test statistic DF J has the following

limiting distribution

DF J =⇒ −Ψ̃2w1 + Ψ̃4(
Ψ̃3 − Ψ̃2

2

)1/2
≡ Υ2. (12)

The proof of this theorem is in Appendix C. Theorem 3.1 suggests that given the exact number
of jumps and their location, the estimated jump sizes φ̃k and the error variance σ̃2

v are consistent.
Furthermore, the limiting distribution of DF J under the new setting (with jumps) is very different
from Υ1 (i.e., in the absence of jumps, see Theorem 2.1). The numerator of Υ2 can be rewritten as[

1

2

(
w2

1 − 1
)
− w1

∫ 1

0
wsds

]
+

1

2

( K∑
k=1

ζk

)2

−
K∑
k=1

ζ2
k

− K∑
k=1

ζk∆2,

and the denominator of Υ2 is the square root of the following quantity:[∫ 1

0
w2
sds−

(∫ 1

0
wsds

)2
]

+

∆1 + (1− rK)

 K∑
j=1

ζj

2

−

(
K∑
k=1

ζk(1− rk)

)2


+2

[
K∑
k=1

ζk

∫ 1

rk

wsds−
∫ 1

0
wsds

K∑
k=1

ζk(1− rk)

]
.

The limiting distribution of DF J does not depend on y0 but on parameters related to jumps,
i.e., rk and ζk (including φk, σ, and N). Next, we simulate the distribution Υ2. For simplicity,

11



we assume one jump per week such that K = bN/5c + 1, τ1 = 1/∆, and τk = 5(k − 1)/∆ for
k > 1. The sign and magnitude of the jumps are assumed to be the same (i.e., φk = φ). We
set φ = {−0.02,−0.01, 0, 0.01, 0.02} and N = 60 in the left panel and N = {20, 60, 100, 200} and
φ = 0.02 in the right panel. We set σ = 0.009 as in Section 2.3. From Figure 2, Υ2 is always on the
right of Υ1 and shifts to the right as the magnitude of the jumps increases (regardless of the sign
of the jumps) or the time period N expands.

Figure 2: The asymptotic distribution of DF J (kernel densities) under the null hypothesis of a
random walk with jumps. We assume K = bN/5c + 1, τ1 = 1/∆, τk = 5(k − 1)/∆ for k > 1,
and φk = φ. The jump size φ = {−0.02,−0.01, 0.01, 0.02} with N = 60 in the left panel and
N = {20, 60, 100, 200} with φ = 0.02 in the right panel.

(a) N = 60

-5 -4 -3 -2 -1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

1

2
: =-0.02

2
: =-0.01

2
: =0.01

2
: =0.02

(b) φ = 0.02
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Theorem 3.2 Under the alternative hypothesis (10), the limiting properties of the OLS estimators
are as follows:

T 1/2
(
φ̃k − φk

)
⇒ N(0, σ2N),

σ̃2
v → σ2N.

The test statistic DF J has the limiting distribution of

DF J =⇒ Ξ̃4 − Ξ̃2w1(
Ξ̃3 − Ξ̃2

2

)1/2
+ c

(
Ξ̃3 − Ξ̃2

2

)1/2
≡ ΥA

2 . (13)

Theorem 3.2 shows that under the alternative (10), the OLS estimators φ̃k and σ̃2
ε are consistent.

The limiting distribution of DF J depends on θ and N through the parameter c, in addition to
the nuisance parameters in Υ2. We now plot the asymptotic distribution of DF J against θ with
N = {20, 60} in Figure 3. To reduce computation, we allow θ to vary from −0.002 to −0.02 on the
left and from 0.002 to 0.02 on the right, with an increment of 0.001 (instead of 0.0001 for Figure
1). The setting of jumps is identical to that in Figure 2. The other parameters are the same as
those in Figure 1. One can see that the pattern of the DF J distribution is similar to that of the
DF statistic in Figure 1.

For practical implementation, one needs to estimate rk, φk and σ before simulating the asymp-
totic critical values. As shown in Theorem 3.1 and Theorem 3.2, given the locations of the jumps,
the magnitude of the jumps φk can be consistently estimated by OLS with Equation (11), while σ2

can be consistently estimated as

σ̃2 =
1

N

T∑
i=1

(
yi∆ − β̃y(i−1)∆ − α̃−

K∑
k=1

φ̃kI
k
i∆

)2

→ σ2

12



Figure 3: The asymptotic distributions (kernel densities) of the DF J test statistic under the null
and the alternative when N = 20 and 60. The value of θ ranges from −0.02 to −0.002 on the left
and from 0.002 to 0.02 on the right, with an increment of 0.001. We set y0 = 6.959, µ = 0.0002 and
σ = 0.009, K = bN/5c+ 1, τ1 = 1/∆, τk = 5(k − 1)/∆ for k > 1, and φk = φ = 0.02.
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under both the null and the alternative. The time period N is known for a given sample. The
location of jumps rk can be identified by the procedure introduced in Section 3.2.1.

3.1.2 Asymptotic of the DF Statistic in the Presence of Jumps

We first show that the standard unit root test, which compares the DF test statistic with critical
values obtained from Υ1, has incorrect size in the presence of additive jumps.

Theorem 3.3 Suppose that the data generating process is (9) and that one ignores the presence of
jumps by estimating Model (4). As ∆→ 0 (T →∞ with N fixed):

σ̂2
v =

∑(
yj∆ − β̂y(j−1)∆ − α̂

)2
→ σ2N

(
1 +

K∑
k=1

ζ2
k

)
.

The DF test statistic has the following limiting distribution:

DF =⇒
Ψ̃4 − Ψ̃2w1 +

∑K
k=1 ζk

(
wrk + γ + ∆2 − Ψ̃2

)
(

1 +
∑K

k=1 ζ
2
k

)1/2 (
Ψ̃3 − Ψ̃2

2

)1/2
≡ Υ3. (14)

It is evident from Theorem 3.3 that the estimated model error variance σ̂2
v is inconsistent. The

limiting distribution of the DF statistic under (9) is Υ3, instead of Υ1. The unit root tests that
compare the DF test statistic with critical values from Υ1 will, therefore, have size distortions.
In Figure 4, we simulate Υ3 and compare it with Υ1. As before, we set y0 = 6.959, σ = 0.009,
φ = {−0.02,−0.01, 0.01, 0.02} and N = 60 in the left panel and N = {20, 60, 100, 200} and φ = 0.02
in the right panel. One can see that the distribution of the DF statistic Υ3 moves to the right of
Υ1 when jumps (both positive and negative) are ignored. This implies that the left-sided DF test
is undersized in the presence of jumps, while the right-sided DF test is oversized in the presence of
jumps.
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Figure 4: The asymptotic distributions (kernel densities) of DF under the null hypothesis of a
random walk with jumps. We assume K = bN/5c + 1, τ1 = 1/∆, τk = 5(k − 1)/∆ for k > 1,
and φk = φ. The jump size φ = {−0.02,−0.01, 0.01, 0.02} with N = 60 in the left panel and
N = {20, 60, 100, 200} with φ = 0.02 in the right panel.
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(b) φ = 0.02
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As correctly pointed out by an anonymous referee, one can obtain the correct size for a test
using the DF statistic by constructing critical values from Υ3 in the presence of jumps, provided
consistent estimates of the nuisance parameters and knowledge of jump occurrence. Theorem 3.4
provides the limiting properties of the DF statistic under the alternative with jumps (10).

Theorem 3.4 Suppose that the data generating process is (10) and the regression model is (4). As
∆→ 0 (T →∞ with N fixed):

σ̂2
v =

∑(
yj∆ − β̂y(j−1)∆ − α̂

)2
→ σ2N

(
1 +

K∑
k=1

ζ2
k

)
.

The DF test statistic has the following limiting distribution:

DF =⇒
Ξ̃4 − Ξ̃2w1 +

∑K
k=1 ςk

[
δ (1− erkc) + Jc (rk) + erkcγ + ∆4 − Ξ̃2

]
(

1 +
∑K

k=1
φ2
k

σ2N

)1/2 (
Ξ̃3 − Ξ̃2

2

)1/2
+ c

 Ξ̃3 − Ξ̃2
2

1 +
∑K

k=1
φ2
k

σ2N

1/2

≡ ΥA
3 .

It is obvious that σ cannot be consistently estimated with Regression (4) in the presence of
jumps. To compute critical values from Υ3, one would need to estimate the nuisance parameters
from regression (11) as for the DF J test. We denote the test based on the DF statistic and
distribution Υ3 by DF (J). To avoid confusion, we refer to the DF statistic of the DF (J) test as
the DF (J) statistic and that of the standard DF test as the DF statistic.

The asymptotic distribution of the DF (J) statistic is presented in Figure 5. The shapes of the
density functions are similar to those of DF and DF J in Figures 1 and 3. In particular, when θ
takes negative but small values, the distribution moves to the right (instead of the left) of the null
distribution. As such, the right-sided unit root test might falsely reject the null of unit root against
explosiveness when the true θ is negative but very close to zero.

As an illustration, let us consider the case of θ = −0.002. Figure 6 displays the limiting
distributions of each test statistic (DF , DF J and DF (J)) under the null and the alternative of
θ = −0.002 with N = {20, 60}. When N = 20, the alternative distribution of all three statistics
moves to the right of their null distribution. The movement of DF J is the least significant, implying
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Figure 5: The asymptotic distributions (kernel densities) of the DF (J) test statistic under the null
and the alternative when N = 20 and 60. The value of θ ranges from −0.02 to −0.002 on the
left of θ = 0 and from 0.002 to 0.02 on the right, with an increment of 0.001. We set y0 = 6.959,
µ = 0.0002 and σ = 0.009, K = bN/5c+1, τ1 = 1/∆, τk = 5(k−1)/∆ for k > 1, and φk = φ = 0.02.
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Figure 6: The asymptotic null and alternative distributions of the DF , DF J , and DF (J) test
statistics when θ = −0.002 and N = {20, 60}.
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(b) DF J and N = 20
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(c) DF (J) and N = 20
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(d) DF and N = 60
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(e) DF J and N = 60
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(f) DF (J) and N = 60
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the lowest false rejection probability of the right-tailed DF J test. As the time period increases to
60, the right movements of DF and DF (J) decrease, whereas the DF J distribution moves to the
left instead. This suggests that unlike the other two methods, the false identification issue of the
DF J test disappears when N increases to 60. The DF J has a clear advantage over DF (J) in
this regard. Consequently, we will focus on DF J rather than DF (J) to account for jumps in the
empirical application and advocate not considering small windows (i.e., N ≤ 20) with one-sided
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tests to avoid systematically wrong conclusions.

3.2 Unit Root Test with Unknown Jump Location

We consider a two-step procedure for the case with unknown jumps. The first step is to identify
the locations of the jumps τ̂k and, therefore, also the number of jumps K̂ to construct the jump
dummies Îki∆. The method employed to identify the jumps and the limiting properties of the jump
test are discussed in Section 3.2.1. In the second step, we conduct the DF J test by replacing K
and Iki∆ in regression (11) with K̂ and Îki∆. The limiting properties of the feasible version of the

DF J test, denoted by DF Ĵ , are discussed in Section 3.2.2.

3.2.1 Jump Identification

The most popular approach to the estimation of jump arrival time(s) is probably that proposed by
Lee and Mykland (2008, LM hereafter). The data generating process under the null hypothesis of
no jumps, considered by Lee and Mykland (2008), is

dyt = µtdt+ σtdwt, (15)

where the drift and diffusion coefficients µt and σt are assumed not to change dramatically over a
short time interval. See Lee and Mykland (2008) for further details on the assumptions. This model
includes (3) as a special case with µt = θ (yt − µ) and σt = σ. Under the alternative,

dyt = µtdt+ σtdwt + xtdJ̃t, (16)

where J̃t is a counting process independent of wt and xt is the jump size, which is assumed to be
predictable.

However, the LM jump test suffers from a significant downward size distortion and has low
power in finite samples when the drift coefficient µt is large in size, as shown by Laurent and Shi
(2020). An example given by Laurent and Shi (2020) is the drift diffusion process (3) with θ and
hence the drift coefficient µt = θ (yt − µ) being nonzero. They propose a simple modification to the
Lee and Mykland (2008) test and show a dramatic improvement in test performance. As shown in
our empirical application, deviations from the random walk (i.e., nonzero θ) are not rare events. It
is, therefore, important to account for such a feature and rely on the jump identification procedure
of Laurent and Shi (2020), which is less sensitive to µt.

Let ri∆ = yi∆ − y(i−1)∆ denote the log return at time i∆, m̂i∆ be the median of the past M
log returns (prior to and including the current observation), and r∗i∆ = ri∆ − m̂i∆ be the centered
log return. The test statistic of Laurent and Shi (2020), denoted by Ui∆, is constructed from the
centered log returns (instead of the raw return ri∆ as in Lee and Mykland, 2008) such that

Ui∆ =
r∗i∆
σ̂∗i∆

with σ̂∗i∆ =

√
1

M
BV ∗i∆, (17)

where BV ∗i∆ = π
2

M
M−1

∑i
j=i−M+2 |r∗j∆||r∗(j−1∆)| is the bipower variation computed on centered log

returns. Under the null hypothesis, the test statistic Ui∆ follows a standard normal distribution
Z. As in Lee and Mykland (2008), we reject the null hypothesis of no jump at period i∆ when
|Ui∆| > cvL,αL , where

cvL,αL = CL + SLβL, (18)

with CL = (2 logL)1/2− 1
2(2 logL)−1/2[log 4π+ log(logL)], βL = − log [− log (1− αL/2)], and SL =

(2 logL)−1/2, L being the number of tests conducted. The critical value is derived from extreme value
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theory for the purpose of controlling for the oversize issue of multiple tests. In all our simulations
and the empirical application, we set L to the total number of observations per month (of 20 days)
and αL to 0.75 so that the expected number of spurious detected jumps is one every four months.

Remark 3.1 Assume that L→∞ at the same rate of T and βL →∞ at a rate that is slower than√
L log (L). It follows that

cvL,αL = CL + SLβL = CL [1 + op (1)] = O
(√

2 logL
)

= O
(√
−2 log (∆)

)
.

Furthermore, under the assumption that M = O (∆a) with −1 < a < −1/2, we have the asymptotic
equivalence of σ̂∗i∆ and σ

√
∆ (Lee and Mykland, 2008). Suppose that there is a jump at period i∆.

The probability of correctly identifying the jump is

P (|Ui∆| > cvL,αL) = P

(∣∣∣∣ r∗i∆σ̂∗i∆
∣∣∣∣ > cvL,αL

)
= P (|r∗i∆| > cvL,αL σ̂

∗
i∆)

∼ P
(
|r∗i∆| > σ

√
−2 log (∆) ∆

)
= 1− F|r∗i∆|

(
σ
√
−2 log (∆) ∆

)
→ 1

as ∆→ 0, which follows the same argument as in Lee (2012). Now, suppose that there is no jump
in period i∆. The probability of not rejecting the null is

P (|Ui∆| ≤ cvL,αL) ∼ 1− 2Φ
(
−
√

2 logL
)
→ 1,

as ∆ → 0, where Φ is the cumulative distribution function of the standard normal distribution,
given that Ui∆ converges to the standard normal distribution under the null.

Remark 3.2 The jump dummy

Î∗i∆ = 1 (|Ui∆| > cvL,αL)→ I∗i∆,

and therefore Îki∆ → Iki∆ as ∆→ 0. This result follows directly from Remark 3.1. Consequently, the

estimated number of jumps K̂ and their locations τ̂k are consistently estimated, i.e.,

K̂ =
T∑
i=1

Î∗i∆ →
T∑
i=1

I∗i∆ = K and τ̂k = arg max
i

{
Îki∆

}
→ τk.

As in Andersen et al. (2007b), Boudt et al. (2011), and Laurent and Shi (2020), we also take
the intraday periodicity in the volatility into consideration. The jump test statistic is

U∗i∆ =
Ui∆

f̂∗i∆
,

where f̂∗i∆ is a robust-to-jumps estimate of the intraday periodicity. In the empirical application,

we assume f̂∗i∆ to be the same across weeks but to vary within the week. The periodic component
is obtained from the weighted standard deviation estimator of Boudt et al. (2011) but computed
on the centered log returns r∗i∆ rather than ri∆ as in Laurent and Shi (2020). See Boudt et al.
(2011) and Laurent and Shi (2020) for a detailed presentation of this estimator. In the simulation
studies, for simplicity, we assume f̂∗i∆ to be the same across days and set the estimated intraday
periodicity to the true value plus zero mean noise. This is because for the estimation of intraday
periodicity, one would need a long sample period. However, it is very computationally intensive to
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simulate long time spans at a one-second frequency. Therefore, the estimated intraday periodicity
f̂∗i∆ is assumed to follow a N(f∗i∆, 0.01) distribution8 and drawn from this distribution to account
for estimation error of the periodicity on the jump test in our simulation study.

3.2.2 Feasible DF J Test

The second step is to conduct the DF Ĵ test based on the jump identification results. To do so, we
replace K and Iki∆ in the regression model with their estimates such that

yi∆ = α+
K̂∑
k=1

φkÎ
k
i∆ + βy(i−1)∆ + vi∆. (19)

The feasible test statistic DF Ĵ is

DF Ĵ =
(
β̈ − 1

) T
∑T

j=1 y
2
j∆ −

(∑T
j=1 y(j−1)∆

)2

∑T
j=1

(
yi∆ − β̈y(i−1)∆ − α̈−

∑K̂
k=1 φ̈kÎ

k
i∆

)2


1/2

,

where α̈, β̈, and φ̈k are the estimated OLS coefficients from regression (19).

Theorem 3.5 The feasible unit root test DF Ĵ has the following limiting properties. For a fixed
time span N , as the sampling interval ∆→ 0,

DF Ĵ =⇒ −Ψ̃2w1 + Ψ̃4(
Ψ̃3 − Ψ̃2

2

)1/2
≡ Υ2 (20)

under the null hypothesis (9), and

DF Ĵ =⇒ Ξ̃4 − Ξ̃2w1(
Ξ̃3 − Ξ̃2

2

)1/2
+ c

(
Ξ̃3 − Ξ̃2

2

)1/2
≡ ΥA

2 (21)

under the alternative hypothesis (10).

The limiting distributions of DF Ĵ are identical to those of DF J , which demonstrates the asymp-
totic equivalence of the feasible and infeasible versions of the test. The proof of Theorem 3.2.2 is
provided in Appendix D.

Remark 3.3 In finite samples, the number of jumps might be over- or underestimated. In the
case of the overidentification of jumps (i.e., K̂ > K), there are (K̂ −K) redundant jump dummies
in regression (19). Those dummies will not have any asymptotic impact on the unit root test.
The consistency of φ̂k remains, following directly from the proof of Theorem 3.5 (omitted here for
brevity). The underidentification of jumps (i.e., K̂ < K) is most likely to happen when jump sizes
are small, as the power of the jump test is higher when the jump size is larger (Laurent and Shi,
2020). The asymptotic impact of underidentification on the DF J statistic is similar to that of
jumps on the DF statistic (Theorem 3.3). However, the impact is expected to be marginal because
the neglected jumps are small.

8For the variance of f̂i∆ (i.e., the setting of 0.01), we first estimated the intraday periodicity with the 10-minute
Nasdaq log prices in 1996 using the parametric approach proposed by Andersen and Bollerslev (1998b). Using the
estimated parameters, we simulate data and run a Monte Carlo study to obtain the mean squared error of the fitted
intraday periodicity.
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Remark 3.4 Using similar arguments as for the DF J test, it is straightforward to show that the
feasible version of the DF (J) statistic, denoted by DF (Ĵ), follows asymptotically the same distri-
bution as the infeasible DF (J) statistic.

4 Simulation Studies

This section investigates the finite sample performance of the unit root test. We first consider a
simple DGP with constant volatility (with or without jumps). We then extend this model with
GARCH effects and intraday periodicity in the volatility and microstructure noise.

4.1 Constant Volatility

The data generating process is (9) under the null and (10) with θ 6= 0 (or α 6= 1) under the
alternative. The value of θ is set to {−0.006,−0.004,−0.002} under the mean reversion alternative
and {0.002, 0.004, 0.006} in the case of explosiveness. We consider the same parameter values for

y0, N, θ, and σ as in Section 2.3 and εi∆
i.i.d∼ N(0, 1). In the case of jumps, the locations of jumps

τki∆ are drawn randomly from a uniform distribution. The number of jumps is set to one per week.
The magnitude of jumps φk is set to κσ with κ = 2 for positive jumps and κ = −2 for negative
jumps.

Each day of simulated log prices consists of 23,400 observations, corresponding to one-second
data over 6.5 hours. The one-second log prices are then aggregated to obtain data at the 10-minute
frequency.9 The nominal size of the tests is 5%, and the number of replications is 1, 000. We

compare the performance of the new test statistics DF Ĵ and DF (Ĵ) with the conventional unit
root test DF . Jump dummies are constructed by employing the test statistic of Laurent and Shi
(2020) as presented in Section 3.2.1.

The empirical sizes and powers of both the left-sided (i.e., H1 : θ < 0) and the right-sided (i.e.,
H1 : θ > 0) tests are reported in Table 1. The left panel is for the test against the mean reversion
alternative, while the right panel is for the test against explosiveness. The top panel reports the
unit root test results in the absence of jumps in log prices. The performance of the three tests is
almost identical in this setting, which is as expected and reassuring of good performance (low false
identification rate) for the jump detection procedure. The empirical sizes of both tests are close to
the nominal size. The power of each test increases as the process deviates further from the random
walk. Note that when N = 60 and θ = −0.002, the powers of the three left-sided tests are lower
than the nominal size. The powers of the left-sided tests, however, increase as θ deviates further
from zero (in the negative direction). This result is consistent with our observation from Figures 1,
3, and 5. That is, as θ decreases from 0 to negative values, the distribution of the test statistic first
moves to the right of the null distribution before turning to the left. Moreover, the power of the
tests increases with the time span N . Notably, when θ = −0.002, the power of the left-sided tests
increases from 0.6% to approximately 25% as the time span extends from one quarter (N = 60) to
approximately one year (N = 200).

The middle and bottom panels are for the cases with positive and negative jumps, respectively.
One can see that in the presence of jumps (either positive or negative), the left-sided DF test
is undersized, while the right-sided DF test is severely oversized, which suggests a probability
of falsely identifying jumps as explosive processes. The model under the null hypothesis (9) is

9The simulation results are qualitatively the same for 5-minute and 30-minute data and are therefore not reported
to save space.
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Table 1: Empirical sizes and powers of the unit root tests at the 10-minute frequency: constant
volatility. The nominal size is 5%.

H1 : α < 1 H1 : α > 1
θ -0.006 -0.004 -0.002 0 0 0.002 0.004 0.006

No jumps
N = 60
DF 60.4 7.7 0.6 6.1 4.1 61.9 97.4 100.0

DF Ĵ 60.3 7.7 0.6 6.1 4.0 61.8 97.4 100.0
DF (J) 60.4 7.7 0.6 6.1 4.1 61.9 97.4 100.0
N = 100
DF 100.0 53.8 3.5 5.4 5.2 83.6 100.0 100.0

DF Ĵ 100.0 53.8 3.5 5.4 5.2 83.6 100.0 100.0
DF (J) 100.0 53.8 3.5 5.4 5.1 83.6 100.0 100.0
N = 200
DF 100.0 100.0 24.6 5.7 5.4 99.9 100.0 100.0

DF Ĵ 100.0 100.0 24.7 5.7 5.4 99.9 100.0 100.0
DF (J) 100.0 100.0 24.6 5.7 5.4 99.9 100.0 100.0

Positive jumps
N = 60
DF 23.5 3.7 0.5 1.5 20.6 61.7 94.2 100.0

DF Ĵ 74.6 18.1 3.0 4.6 4.1 26.8 83.6 100.0

DF (Ĵ) 53.6 23.7 12.3 4.9 3.5 40.8 92.8 100.0
N = 100
DF 89.3 18.8 1.6 1.2 28.6 81.1 100.0 100.0

DF Ĵ 100.0 69.1 9.0 5.3 4.3 48.5 100.0 100.0

DF (Ĵ) 92.9 54.2 22.1 5.7 4.5 59.4 100.0 100.0
N = 200
DF 100.0 97.1 6.7 0.6 33.9 100.0 100.0 100.0

DF Ĵ 100.0 100.0 37.7 4.7 5.2 99.3 100.0 100.0

DF (Ĵ) 100.0 97.8 39.2 5.3 5.4 99.7 100.0 100.0

Negative jumps
N = 60
DF 37.6 6.7 0.8 1.5 22.9 50.5 87.3 99.9

DF Ĵ 87.7 29.6 4.0 3.8 5.4 16.7 68.3 99.9

DF (Ĵ) 74.4 17.5 2.0 3.2 5.6 37.3 68.4 95.7
N = 100
DF 98.2 36.7 2.0 1.1 30.0 66.0 99.9 100.0

DF Ĵ 100.0 89.4 16.1 4.1 5.9 27.9 99.2 100.0

DF (Ĵ) 100.0 82.2 10.8 4.8 5.4 44.6 91.5 100.0
N = 200
DF 100.0 100.0 22.3 1.0 39.7 95.2 100.0 100.0

DF Ĵ 100.0 100.0 74.8 5.4 5.2 80.3 100.0 100.0

DF (Ĵ) 100.0 100.0 68.1 5.2 5.4 67.4 100.0 100.0
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equivalent to a random walk process with breaks in the drift (due to the presence of jumps).10 The
results of the left-sided test echo the literature documenting observational equivalences between unit
roots and structural breaks (e.g., Perron, 1990; Banerjee et al., 1992; Perron, 1997; Lumsdaine and
Papell, 1997). Our result for the right-sided test is consistent with the findings of Phillips and Shi
(2019), where a random drift martingale process is considered. Although one could visually separate
negative jumps from an upward expanding explosive process (Phillips and Shi, 2019), there is no
solution in the literature for distinguishing positive jumps from upward explosive processes.

Here, by including jump dummies in the model specifications, the DF Ĵ test is able to isolate the

impact of jumps while detecting breaks in the autoregressive coefficient. Both the DF Ĵ and DF (Ĵ)
tests have reasonable sizes in all configurations. The size distortion of the DF tests translates
into a lack of power for the left-sided DF test and more rejections for the right-sided DF test

than the right-sided DF Ĵ and DF (Ĵ) tests. Interestingly, despite the low (absolute) values of

the θ parameters considered in the simulation, DF Ĵ and DF (Ĵ) have good power against both
alternatives. As expected, the powers increase with |θ| and N . Between DF J and DF (J), none of
the tests uniformly dominates the other in terms of sizes and powers.

Recall that Figure 6 shows that when θ is negative and close to zero, all three tests have a
probability of making a false positive rejection against the explosive alternative in the limit. The
problem is much more severe for the DF and DF (J) tests than the DF J test. To verify these
arguments in finite samples, we report the rejection frequencies of the left (resp. right) sided test
while the true process is explosive (resp. stationary) on the left (resp. right) part of Table 2. The
simulation results are consistent with our theoretical results. The left-sided tests have a near-zero
probability of rejecting the null when the process is explosive (with positive θ). For the right-
sided test, when the true process is mildly reverting (i.e., θ is negative and close to zero) and N is
small (i.e., 60 and 100), all three tests wrongly detect an explosive pattern with high probability
(approximately 33% when N = 60 and 20% when N = 100) in the absence of jumps. In the presence

of jumps, DF Ĵ clearly outperforms DF and DF (Ĵ) in that it rejects the null hypothesis in favor
of the wrong hypothesis much less frequently. For example, when N = 60, θ = −0.002, and with
positive jumps, the false rejection frequency of the right-sided DF J test is 6.5%, compared with
34.4% of DF and 27.9% of DF (J).

4.2 Time-varying Volatility and Microstructure Noise

To study the impact of time-varying volatility and microstructure noise, we consider more general
model specifications. Under the null hypothesis, efficient log prices are now generated as follows:

yi∆ = α0 +
K∑
k=1

φkI
k
i∆ + y(i−1)∆ + λi∆εi∆, (22)

where the volatility of log returns consists of a deterministic term fi∆ and a stochastic component
σi∆ such that

λi∆ = fi∆σi∆
√

∆.

We assume that f varies within the day but for simplicity restrict it to be the same across the N
days in this simulation. To simulate a realistic periodic factor, we follow Laurent and Shi (2020) and
take the estimated periodicity obtained using the parametric method proposed by Andersen and

10This feature distinguishes jumps from bubbles, which are often modeled as a mildly explosive process (Phillips
et al., 2011, 2015a; Phillips and Shi, 2018). The autoregressive coefficient of the mildly explosive process is greater
than unity and takes the form of ρT = 1 + cT−α, with c being a constant, T being the sample size and α ∈ (0, 1).
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Table 2: Rejection frequencies in favor of the wrong hypothesis at the 10-minute frequency: constant
volatility. The nominal size is 5%.

H1 : α < 1 H1 : α > 1
0.002 0.004 0.006 -0.006 -0.004 -0.002

No jumps
N = 60
DF 0.1 0.0 0.0 0.2 6.9 32.8

DF Ĵ 0.1 0.0 0.0 0.2 6.9 32.9

DF (Ĵ) 0.1 0.0 0.0 0.2 6.9 32.9
N = 100
DF 0.0 0.0 0.0 0.0 0.2 19.8

DF Ĵ 0.0 0.0 0.0 0.0 0.2 19.8

DF (Ĵ) 0.0 0.0 0.0 0.0 0.2 19.8
N = 200
DF 0.0 0.0 0.0 0.0 0.0 1.3

DF Ĵ 0.0 0.0 0.0 0.0 0.0 1.3

DF (Ĵ) 0.0 0.0 0.0 0.0 0.0 1.3

Positive jumps
N = 60
DF 0.0 0.0 0.0 1.9 15.9 34.4

DF Ĵ 0.2 0.0 0.0 0.0 0.6 6.5

DF (Ĵ) 0.2 0.0 0.0 3.8 15.9 27.9
N = 100
DF 0.0 0.0 0.0 0.0 3.7 26.2

DF Ĵ 0.0 0.0 0.0 0.0 0.0 2.6

DF (Ĵ) 0.0 0.0 0.0 0.1 5.6 19.9
N = 200
DF 0.0 0.0 0.0 0.0 0.0 8.9

DF Ĵ 0.0 0.0 0.0 0.0 0.0 0.0

DF (Ĵ) 0.0 0.0 0.0 0.0 0.0 7.3

Negative jumps
N = 60
DF 0.2 0.0 0.0 0.8 10.5 31.8

DF Ĵ 0.8 0.0 0.0 0.0 0.2 5.0

DF (Ĵ) 8.5 1.4 0.0 0.0 0.9 10.9
N = 100
DF 0.0 0.0 0.0 0.0 0.7 20.3

DF Ĵ 0.9 0.0 0.0 0.0 0.0 1.6

DF (Ĵ) 7.6 0.1 0.0 0.0 0.0 2.3
N = 200
DF 0.0 0.0 0.0 0.0 0.0 2.4

DF Ĵ 0.0 0.0 0.0 0.0 0.0 0.0

DF (Ĵ) 1.5 0.0 0.0 0.0 0.0 0.0
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Bollerslev (1998b) on the 10-minute Nasdaq stock price index from January 2, 1996, to December
8, 2017. The periodic component fi∆ used in the simulations is plotted in Figure 7. It displays the
usual diurnal pattern found in the volatility of intraday returns of most individual stocks and stock
indices. The value of fi∆ ranges from 0.6 to 1.6.

Figure 7: The simulated 1-second periodicity fi∆ illustrated for one day.
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The stochastic component is assumed to follow the GARCH(1,1) diffusion process of Nelson
(1991), which has a discretized form of

σ2
i∆ = δ0 + σ2

(i−1)∆(β1 + α1εi∆), (23)

where δ0 = κω∆, β1 = 1 − κ∆, α1 =
√

2λκ∆, and εi∆
i.i.d∼ N(0, 1). As in Andersen and Bollerslev

(1998a), we choose the parameters κ = 0.035 and λ = 0.296 to simulate a log price process with
realistic GARCH effects and set ω = 0.012 such that E(σ2

i∆) = 0.012 as in the previous simulations.
Under the alternative, we have

yi∆ = α0 +
K∑
k=1

φkI
k
i∆ + β0y(i−1)∆ + λi∆εi∆. (24)

The settings of α0, β0 and jumps are the same as in the previous section.
Additionally, we assume that log prices are contaminated by microstructure noise such that y∗i∆

is observed instead of the true efficient log price yi∆, where

y∗i∆ = yi∆ +$vi∆

with $2 = ξ
√

1
∆

∑1/∆
j=1 σ

4
i∆ and vi∆

i.i.d∼ N(0, 1). We set ξ to 0.0005.
Table 3 displays the rejection frequencies of the one-sided tests in the presence of microstructure

noise, GARCH effects and intraday periodicity for a nominal size of 5%. The organization of the
table is identical to that of Table 1. The results are qualitatively the same as in the case of constant
volatility. In the absence of jumps, the three tests have similar sizes and powers. This finding
suggests that heteroskedasticity and microstructure noise have little impact on the performance of
the unit root tests when they are applied to 10-minute data and when N ≥ 60.11 As in the case of

constant volatility, jumps have a strong impact on the performance of the DF test. Again, DF Ĵ

11Unreported simulation results suggest that time-varying volatility has a larger impact on test performance when
the window size is small, e.g., when N < 5. In this case, as in Boswijk and Zu (2018), an adaptive wild bootstrap
version of our test can be employed. We leave this extension for further research.
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Table 3: Empirical sizes and powers of the unit root tests at the 10-minute frequency: GARCH
effects, intraday periodicity and microstructure noise. The nominal size is 5%.

H1 : α < 1 H1 : α > 1
θ -0.006 -0.004 -0.002 0 0 0.002 0.004 0.006

No jumps
N = 60
DF 57.0 8.1 0.9 7.3 5.1 64.1 96.0 100.0

DF Ĵ 57.3 8.1 0.9 7.4 5.2 64.1 96.0 100.0

DF (Ĵ) 57.4 8.1 0.9 7.4 5.2 64.1 96.0 100.0
N = 100
DF 98.9 48.2 2.4 6.6 5.3 82.1 100.0 100.0

DF Ĵ 98.9 48.0 2.4 6.7 5.2 82.1 100.0 100.0

DF (Ĵ) 98.9 48.0 2.4 6.7 5.3 82.2 100.0 100.0
N = 200
DF 100.0 99.6 19.6 6.0 5.6 99.6 100.0 100.0

DF Ĵ 100.0 99.7 19.3 5.7 5.5 99.6 100.0 100.0

DF (Ĵ) 100.0 99.7 19.5 5.7 5.5 99.6 100.0 100.0

Positive jumps
N = 60
DF 24.3 3.5 0.7 1.7 22.8 63.0 93.0 100.0

DF Ĵ 67.9 16.3 3.6 5.3 5.4 29.4 81.6 99.9

DF (Ĵ) 50.7 24.2 14.6 5.0 5.6 43.9 90.1 100.0
N = 100
DF 24.3 3.5 0.7 1.7 22.8 63.0 93.0 100.0

DF Ĵ 67.9 16.3 3.6 5.3 5.4 29.4 81.6 99.9

DF (Ĵ) 50.7 24.2 14.6 5.0 5.6 43.9 90.1 100.0
N = 200
DF 100.0 88.3 6.4 0.9 35.9 99.7 100.0 100.0

DF Ĵ 100.0 99.6 30.9 4.8 5.5 97.8 100.0 100.0

DF (Ĵ) 100.0 94.1 39.7 4.9 5.6 98.3 100.0 100.0

Negative jumps
N = 60
DF 38.7 6.1 0.8 1.4 23.2 52.0 85.4 99.6

DF Ĵ 80.4 27.7 4.9 5.2 7.1 17.7 67.6 98.9

DF (Ĵ) 68.2 16.3 2.5 5.2 6.6 38.9 67.6 93.2
N = 100
DF 93.3 32.8 2.6 1.9 30.2 63.2 98.8 100.0

DF Ĵ 99.9 84.3 13.4 5.4 4.1 25.9 98.2 100.0

DF (Ĵ) 99.7 74.0 8.9 4.9 4.5 42.2 88.4 99.9
N = 200
DF 100.0 97.3 15.8 1.0 37.6 89.7 100.0 100.0

DF Ĵ 100.0 100.0 65.0 5.1 5.7 71.4 100.0 100.0

DF (Ĵ) 100.0 100.0 59.9 5.2 5.9 64.2 100.0 100.0
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Table 4: Rejection frequencies in favor of the wrong hypothesis at the 10-minute frequency: GARCH
effects, intraday periodicity and microstructure noise. The nominal size is 5%.

H1 : α < 1 H1 : α > 1
0.002 0.004 0.006 -0.006 -0.004 -0.002

No jumps
N = 60
DF 0.1 0.0 0.0 0.4 7.8 31.6

DF Ĵ 0.1 0.0 0.0 0.4 7.7 31.5

DF (Ĵ) 0.1 0.0 0.0 0.4 7.8 31.5
N = 100
DF 0.0 0.0 0.0 0.0 0.4 20.2

DF Ĵ 0.0 0.0 0.0 0.0 0.4 20.5

DF (Ĵ) 0.0 0.0 0.0 0.0 0.4 20.4
N = 200
DF 0.0 0.0 0.0 0.0 0.0 3.2

DF Ĵ 0.0 0.0 0.0 0.0 0.0 3.2

DF (Ĵ) 0.0 0.0 0.0 0.0 0.0 3.2

Positive jumps
N = 60
DF 0.1 0.0 0.0 2.1 14.9 32.0

DF Ĵ 0.6 0.0 0.0 0.0 1.2 7.0

DF (Ĵ) 0.2 0.0 0.0 4.1 16.2 26.3
N = 100
DF 0.0 0.0 0.0 0.0 3.4 26.8

DF Ĵ 0.1 0.0 0.0 0.0 0.0 2.8

DF (Ĵ) 0.0 0.0 0.0 0.0 4.9 19.6
N = 200
DF 0.0 0.0 0.0 0.0 0.0 12.7

DF Ĵ 0.0 0.0 0.0 0.0 0.0 0.2

DF (Ĵ) 0.0 0.0 0.0 0.0 0.2 9.0

Negative jumps
N = 60
DF 0.0 0.0 0.0 0.9 12.2 32.9

DF Ĵ 1.1 0.0 0.0 0.0 0.8 7.3

DF (Ĵ) 8.8 1.8 0.0 0.0 1.6 12.3
N = 100
DF 0.0 0.0 0.0 0.1 1.6 21.4

DF Ĵ 0.3 0.0 0.0 0.0 0.0 1.0

DF (Ĵ) 9.1 0.4 0.1 0.0 0.0 2.1
N = 200
DF 0.0 0.0 0.0 0.0 0.0 5.2

DF Ĵ 0.0 0.0 0.0 0.0 0.0 0.0

DF (Ĵ) 4.2 0.0 0.0 0.0 0.0 0.0
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and DF (Ĵ) have good power against both alternatives. There are cases where DF Ĵ outperforms
DF (Ĵ) and vice versa.

Table 4 corresponds to Table 2 but with time-varying volatilities. As in Table 2, we see that in the

presence of jumps, DF Ĵ clearly outperforms DF (Ĵ) in that the DF J test rejects the null hypothesis
in favor of the wrong hypothesis much less frequently. For this reason, and since there is tremendous
evidence of the presence of jumps in high-frequency asset prices, we therefore recommend the use

of DF Ĵ in empirical applications.

5 Empirical Application

The primary purpose of this section is to show the impact of jumps on unit root testing on intraday

data by comparing the performance of the standard DF test and the proposed DF Ĵ test. The
DF (Ĵ) test is not considered because it has a much higher probability of rejecting against wrong
hypotheses (as discussed). We investigate the dynamics of the 10-minute log prices of the Nasdaq
composite index over two sample periods (1999-05-01 to 2000-06-30 and 2015-05-01 to 2016-01-31).
The data are downloaded from Thomson Reuters DataScope and displayed in Figure 8.

The first period falls in the famous dot-com bubble period (Phillips et al., 2011; Shi and Song,
2016). It has been widely recognized that asset prices exhibit explosive dynamics in the presence of
speculative bubbles (Diba and Grossman 1988; Phillips et al. 2011; Phillips et al. 2015a,b). Evidence
of speculative bubbles has been detected in various markets with low-frequency data (daily, weekly
or monthly).12 The dot-com bubble is the most prominent episode. We can see a dramatic increase
in the Nasdaq stock price in the second half of 1999. The market peaked on March 10, 2000, followed
by a sharp downturn.

The second episode is around the 2015-2016 stock market sell-off, triggered by the bursting of
the Chinese stock market bubble on 12 June 2015. We observe dramatic turbulence in the Nasdaq
stock market between August and October. In particular, the Nasdaq market dropped 15.59% from
19 August to 24 August. It recovered to approximately the same level as before the crash by the
end of October 2015. Various models have been proposed for capturing the dynamics of a bubble
bursting and market crashes (e.g., a mildly stationary process of Phillips and Shi, 2018 and the
random drift martingale process of Phillips and Shi, 2019) but yet to be tested empirically.

We first apply the jump test of Laurent and Shi (2020) (with the same critical values as in the
simulation studies) to the two data series to create the jump dummies. In empirical applications
on jump detection with high-frequency data, overnight returns are often removed because they
convey information on a more extended period than the other returns (i.e., 17.5 hours rather than
10 minutes in our case). Removing the first observation of each day is obviously not a solution for
unit root tests with log prices. Therefore, we keep the first observations of the days (and hence
overnight returns) for both the jump and unit root tests. The variance of overnight returns can be
captured by the periodicity component, which is taken care of in our test for jumps. Moreover, we
show in our simulations that the periodicity of variances does not have a significant impact on unit
root tests when N is larger than 60. Therefore, the inclusion of overnight returns is not expected
to affect our test outcomes. The identified jumps are marked with diamonds in Figure 8. There
are 149 jumps during the first sample (i.e., 1999-05-1 and 2000-06-30) and 91 during the second
one (i.e., 2015-05-01 and 2016-01-31). It is clear from this figure that jumps are not rare events.
Furthermore, some of the detected jumps are very large and therefore expected to have an impact
on the DF test.

12See, for example, Phillips et al. (2011), Gutierrez (2012); Fantazzini (2016); Etienne et al. (2013); Pavlidis et al.
(2016); Hu and Oxley (2018); Shi (2017).
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Figure 8: The 10-minute log prices of the Nasdaq composite index for two sample periods. The

diamonds indicate the jumps used in the DF Ĵ test. The vertical lines indicate the cutoff dates of
each subsample.
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For the unit root tests, we divide each period into three subsamples, guided by the important
events discussed above. The cutoff dates of the subsamples are marked by vertical lines in Figure

8. The unit root test statistics DF and DF Ĵ and their corresponding asymptotic critical values for
the left- and right-sided tests (5% and 95%) are reported in Table 5, along with the exact dates of
each subsample and the number of jumps detected in each subsample.13

For the dot-com bubble period, both procedures detect explosive dynamics in the Nasdaq stock
market in the first subsample (between May 1999 and December 1999).14 In the second subsample,
while the null hypothesis of a random walk is still rejected against explosiveness with the DF test,
the DF J test does not reject the null against the explosive alternative. The distinct outcomes of

the DF and DF Ĵ tests could potentially be explained by our findings in Sections 3 and 4. That
is, jumps could lead to spurious rejections of the DF test against the alternative hypothesis of
explosiveness. In contrast, the DF J test, which accounts for the presence of jumps, has satisfactory

performance under this circumstance. The DF Ĵ test suggests that the process returns to a random
walk in the period from 2000-01-01 to 2000-03-10 before reaching the peak of the bubble episode.
This result has important implications for traders who have every intension to withdraw from the
market before bubbles collapse. Interestingly, the two tests again agree when applied to the third
subsample, spanning between 11 March 2000 and 30 June 2000. Indeed, we fail to reject the null
hypothesis during this period using both tests, suggesting that the bursting of the dot-com bubble
follows a random walk pattern.

Similarly, for the second sample period (2015-2016), DF and DF Ĵ yield consistent results in
the first and third subsamples but draw different conclusions in the second subsample. Both tests

13Since the jump dummies are orthogonal to each other and φ̂k is asymptotically normally distributed (according to
Theorem 3.2), standard t-tests can be used to eliminate insignificant jump dummies in Equation (10). As the results
are qualitatively the same when including all jump dummies or only dummies that are significant at the conventional
significance levels, we only report the results with all jump dummies. Unreported simulations reveal similar sizes and

powers for the DF Ĵ test when the regression includes all jump dummies (including redundant ones) or only significant
ones.

14The presence of explosive dynamics in asset prices does not imply the existence of bubbles. An additional necessary
step is to control for the impact of market fundamentals. Stock market fundamentals are often proxied by dividends
or earnings, which are unfortunately not available at such a high frequency. Therefore, we do not refer to the explosive
dynamics as bubbles in this paper.
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Table 5: Results of the DF and DF Ĵ tests

Start End DF left cv right cv DF Ĵ left cv right cv Jumps

1999-05-01 1999-12-31 1.639 -2.857 -0.089 2.215 -2.819 0.062 84
2000-01-01 2000-03-10 0.160 -2.857 -0.089 0.312 -2.672 0.404 34
2000-03-11 2000-06-30 -2.008 -2.857 -0.089 -1.937 -2.809 0.005 31

2015-05-01 2015-07-31 -2.357 -2.857 -0.089 -2.426 -2.823 -0.038 32
2015-08-01 2015-10-15 -2.406 -2.857 -0.089 -3.026 -2.714 0.268 22
2015-10-16 2016-01-31 -0.788 -2.857 -0.089 -0.120 -2.746 0.057 37

Note: The statistics highlighted in bold are significant at the 5% level using either the
left- or right-sided critical values. The figures in the columns left cv and right cv are
the critical values used for the corresponding left-sided and right-sided tests, respectively.
The figures in the last column correspond to the number of jumps detected using the test
of Laurent and Shi (2020).

conclude that the log Nasdaq price follows a unit root process in the first and third subsamples.

For the turbulent 2.5 months in 2015 (from 1 August to 15 October), the DF Ĵ rejects the null
against the mean reversion alternative, while the DF test fails to do so. Again, this finding is not
surprising, as we find in Sections 3 and 4 that jumps decrease the power of the DF test against
mean reversion, and we observe jumps with extremely large magnitudes over this period (e.g., at

the opening of 24 August 2015). Interestingly, unlike the bursting of the dot-com bubble, the DF Ĵ

test suggests that the stock market crash in late 2015 follows a mean reversion process.
Finally, although the availability of high-frequency data allows us to conduct the unit root tests

using data over short time periods and hence reduce the probability of having structural breaks
within the sample period, it does not completely rule out this possibility. The performance of the
unit root tests in the presence of structural breaks remains unknown. One could potentially account
for structural breaks with the model proposed by Jiang et al. (2017) but extended to allow for jumps.

Here, we provide examples of cases when both DF and DF Ĵ reject the unit root null hypothesis
in favor of the same alternative and, more important, when they contradict, with carefully divided
subsamples. A comprehensive analysis of the structural break issue and a more extensive empirical
application over a longer sample period is left for future work.

6 Conclusion

This paper provides an efficient tool for detecting deviations of asset prices from a random walk with
intraday high-frequency data. The proposed tool is based on unit root tests but takes the empirical
features of high-frequency data (particularly jumps) into consideration. The null hypothesis is a
random walk, while the alternative hypothesis is either mean reversion or explosiveness. With the
in-fill asymptotic, we show that the conventional DF tests could lead to severe size distortions in
the presence of jumps, according to both the asymptotic and simulation results.

We propose two new tests that account for the possible presence of jumps, denoted DF J and

DF (J) for the unfeasible version and DF Ĵ and DF (Ĵ) for the feasible one. The limiting distri-
butions of the new test statistics under both the null and the alternative are provided. Both tests
depend on nuisance parameters for which we propose consistent estimators. Importantly, we show
the asymptotic equivalence between the infeasible (i.e., assuming true jump occurrences) and fea-
sible (i.e., relying on a test to identify jumps) versions of the tests. Simulation results reveal the
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satisfactory performance (in terms of size and power) of the new tests but also that DF (Ĵ) tends to
reject too often against the wrong alternative when the process is mildly mean-reverting (θ < 0 but

close to zero), and N is relatively small. Therefore, we recommend the use of DF Ĵ for empirical
applications.

Furthermore, we show via simulations that conditional heteroskedasticity, intraday periodicity,
and microstructure noise do not affect the finite sample performance of the tests when the test
window is applied to one quarter of data (or more), and the sampling frequency is 10 minutes or
lower.

We apply the conventionalDF test andDF Ĵ to the 10-minute log prices of the Nasdaq composite
index around the peak of the dot-com bubble (1999-2000) and the 2015-2016 stock market sell-off
periods. Both tests reject the null against the explosive alternative in late 1999. The two unit root
tests, however, provide contradictory results in the early 2000s before the bursting of the dot-com
bubble and in late 2015 when the market experienced turbulence. We attribute these differences
to the lack of power of the left-sided DF test and the oversize issue of the right-sided DF test

when jumps are ignored. The DF Ĵ test suggests that log Nasdaq prices switch back to a random
walk dynamic (from being explosive) as the peak of the bubble approaches. Additionally, the
dot-com bubble collapses in a random walk fashion, while the 2015 stock market crash follows a
mean-reverting process.
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Appendix A: Proof of Remark 2.2

Proof. The DF statistic can be rewritten as
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(1) When θ > 0, from Wang and Yu (2016), under the DGP of (2) and the double asymptotic
scheme,

tβ̂ =⇒ N (0, 1) ,
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y2
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with Z1 ∼ N(0, 1
2θ ). Therefore,
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It follows that
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(2) Consider the case of θ < 0. From Wang and Yu (2016), assuming E |ε1∆|2+δ < ∞ for some
δ > 0, under the DGP of (2) and the double asymptotic scheme,
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It follows that when θ < 0
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Appendix B: Asymptotics of Models with Jumps

Proof of Lemma 3.1. The null hypothesis (9) can be rewritten as
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≡ σN1/2Ψ̃2

since

T−1
T∑
i=1

i∑
j=1

K∑
k=1

φkI
k
j∆ = T−1

K∑
k=1

φk

T∑
i=1

i∑
j=1

Ikj∆

= T−1
K∑
k=1

φk

[
Ik1∆ + (Ik1∆ + Ik2∆) + · · ·+ (Ik1∆ + Ik2∆ + · · ·+ IkT∆)

]
= T−1

K∑
k=1

φk(T − τk) =

K∑
k=1

φk (1− rk)

and from the proof Lemma 2.1 in the online supplement

T−1
T∑
i=1

σ√∆
i∑

j=1

εj∆ + y0

 =⇒ σN1/2Ψ2.

(c) The quantity

T−1
T∑
i=1

y2
i∆ = T−1

T∑
i=1

 i∑
j=1

K∑
k=1

φkI
k
j∆ + σ

√
∆

i∑
j=1

εj∆ + y0

2
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= T−1
T∑
i=1

 i∑
j=1

K∑
k=1

φkI
k
j∆

2

+ T−1
T∑
i=1

σ√∆
i∑

j=1

εj∆ + y0

2

+ 2T−1
T∑
i=1

i∑
j=1

K∑
k=1

φkI
k
j∆

σ√∆

i∑
j=1

εj∆ + y0

 .

The first term

T−1
T∑
i=1

 i∑
j=1

K∑
k=1

φkI
k
j∆

2

= T−1
T∑
i=1

 K∑
k=1

φk

i∑
j=1

Ikj∆

2

= T−1

K−1∑
k=1

(τk+1 − τk)

 k∑
j=1

φj

2

+ (T − τK)

 K∑
j=1

φj

2
=

{
(1− r1)φ2

1 if K = 1∑K−1
k=1 (rk+1 − rk)

(∑k
j=1 φj

)2
+ (1− rK)

(∑K
j=1 φj

)2
if K > 1.

The second term, from the proof Lemma 2.1 in the online supplement,

T−1
T∑
j=1

[
σ
√

∆

j∑
i=1

εi∆ + y0

]2

=⇒ σ2NΨ3.

The third term

2T−1
T∑
i=1

i∑
j=1

K∑
k=1

φkI
k
j∆

σ√∆
i∑

j=1

εj∆ + y0


= 2σN1/2

T−3/2
K∑
k=1

φk

T∑
i=1

i∑
j=1

Ikj∆

i∑
j=1

εj∆

+ 2y0

T−1
T∑
i=1

i∑
j=1

K∑
k=1

φkI
k
j∆


=⇒ 2σN1/2

K∑
k=1

φk

∫ 1

rk

wsds+ 2y0

K∑
k=1

φk (1− rk)

since

T−3/2
T∑
i=1

 K∑
k=1

φk

i∑
j=1

Ikj∆

 i∑
j=1

εj∆


= T−3/2

K∑
k=1

φk

T∑
i=1

 i∑
j=1

Ikj∆

i∑
j=1

εj∆


= T−3/2

n

K∑
k=1

φk

(T − τk)
τk∑
i=1

εi∆ +

T∑
i=τk+1

(T − i+ 1) εi∆


=

K∑
k=1

φk

T − τk
T

(
T−1/2

τk∑
i=1

εi∆

)
+ T−3/2

n

Tn∑
i=τk+1

(T − i) εi∆


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=
K∑
k=1

φk

T − τk
T

(
T−1/2

τk∑
i=1

εi∆

)
+ T−1/2

T∑
i=τk+1

εi∆ − T−3/2
T∑

i=τk+1

iεi∆


⇒

K∑
k=1

φk

[
(1− rk)wrk + (w1 − wrk)−

(
w1 − rkwrk −

∫ 1

rk

wsds

)]

=
K∑
k=1

φk

∫ 1

rk

wsds.

Therefore,

T−1
T∑
i=1

y2
i∆ ⇒ σ2N

Ψ3 + ∆1 + (1− rK)

 K∑
j=1

φj

σN1/2

2

+2

K∑
k=1

φk
σN1/2

∫ 1

rk

wsds+ 2
y0

σN1/2

K∑
k=1

φk
σN1/2

(1− rk)

]
≡ σ2NΨ̃3

with

∆1 =

 (1− r1)
φ2

1
σ2N

if K = 1∑K−1
k=1 (rk+1 − rk)

(∑k
j=1

φj
σN1/2

)2
+ (1− rK)

(∑K
j=1

φj
σN1/2

)2
if K > 1.

(d) By squaring (9), subtracting y2
(i−1)∆ from both sides, summing over i = 1, ..., T , re-organizing

the equation, and multiplying by T−1/2, we get

T−1/2
T∑
i=1

y(i−1)∆εi∆ =
T−1/2

2σ
√

∆

y2
T∆ − y2

0 − σ2∆
T∑
i=1

ε2
i∆ −

T∑
i=1

(
K∑
k=1

φkI
k
i∆

)2

−2

T∑
i=1

K∑
k=1

φkI
k
i∆

(
y(i−1)∆ + σ

√
∆ε(i−1)∆

)]
.

We have yT∆ =⇒ Ψ̃1, σ
2∆
∑T

i=1 ε
2
i∆ → σ2N,

∑T
i=1

(∑K
k=1 φkI

k
i∆

)2
=
∑K

k=1 φ
2
k,

2

T∑
i=1

(
K∑
k=1

φkI
k
i∆

)(
y(i−1)∆ + σ

√
∆ε(i−1)∆

)
= 2

K∑
k=1

φk

T∑
i=1

Iki∆y(i−1)∆ + σ
√

∆
K∑
k=1

φk

T∑
i=1

Iki∆ε(i−1)∆

= 2

K∑
k=1

φky(τk−1)∆ + σ
√

∆

K∑
k=1

φkε(τk−1)∆ =⇒ 2σN1/2
K∑
k=1

φk

(
wrk +

y0

σN1/2

)
since σ

√
∆
∑K

k=1 φkε(τk−1)∆ → 0 and

y(τk−1)∆ = σ
√

∆

τk−1∑
j=1

εj + y0 +
K∑
k=1

φk

τk−1∑
j=1

Ikj =⇒ N1/2
(
wrk +

y0

σN1/2
+ ∆2

)
,
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where ∆2 = 0 if K = 0 and ∆2 =
∑k−1

j=1
φj

σN1/2 if K > 1. Therefore,

T−1/2
T∑
i=1

y(i−1)∆εi∆ =⇒ σN1/2

2

[
Ψ̃2

1 −
y2

0

σ2N
− 1−

K∑
k=1

φ2
k

σ2N
− 2

K∑
k=1

φk
σN1/2

(
wrk +

y0

σN1/2
+ ∆2

)]
≡ σN1/2Ψ̃4.

Proof of Lemma 3.2. (a) The alternative model can be rewritten as

yi∆ = α0
1− eiθ∆

1− eθ∆
+

i∑
j=1

e(i−j)θ∆

(
λ0εj∆ +

K∑
k=1

φkI
k
j∆

)
+ eiθ∆y0. (26)

It follows that

yT∆ = α0
1− eTθ∆

1− eθ∆
+ λ0

T∑
j=1

e(T−j)θ∆εj∆ + eTθ∆y0 +
T∑
j=1

e(T−j)θ∆
K∑
k=1

φkI
k
j∆.

From the proof of Lemma 2.2 in the online supplement

α0
1− eTθ∆

1− eθ∆
+ λ0

T∑
j=1

e(T−j)θ∆εj∆ + eTθ∆y0 =⇒ σN1/2Ξ1.

The last term
T∑
j=1

e(T−j)θ∆
K∑
k=1

φkI
k
j∆ =

K∑
k=1

φk

T∑
j=1

e
T−j
T

cIkj∆ =
K∑
k=1

φke
(1−rk)c.

Therefore,

yT∆ =⇒ σN1/2

[
Ξ1 +

K∑
k=1

φk
σN1/2

e(1−rk)c

]
≡ σN1/2Ξ̃1.

(b) The quantity

T−1
T∑
i=1

yi∆ = T−1
T∑
i=1

α0
1− eiθ∆

1− eθ∆
+ λ0

i∑
j=1

e(T−j)θ∆εj∆ + eiθ∆y0 +
i∑

j=1

e(i−j)θ∆
K∑
k=1

φkI
k
j∆


= T−1

T∑
i=1

α0
1− eiθ∆

1− eθ∆
+ λ0

i∑
j=1

e(T−j)θ∆εj∆ + eiθ∆y0

+ T−1
T∑
i=1

i∑
j=1

e(i−j)θ∆
K∑
k=1

φkI
k
j∆.

From the proof of Lemma 2.2 in the online supplement

T−1
T∑
i=1

α0
1− eiθ∆

1− eθ∆
+ λ0

i∑
j=1

e(T−j)θ∆εj∆ + eiθ∆y0

 =⇒ σN1/2Ξ2.

Furthermore,

T−1
T∑
i=1

i∑
j=1

e(i−j)θ∆
K∑
k=1

φkI
k
j∆ = T−1

K∑
k=1

φk

T∑
i=1

i∑
j=1

e(i−j)θ∆Ikj∆
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= T−1
K∑
k=1

φk

T∑
i=1

1− e(T−i+1)θ∆

1− eθ∆
Iki∆

= T−1
K∑
k=1

φk
1− e(T−τk+1)θ∆

1− eθ∆

→ 1

c

K∑
k=1

φk

[
e(1−rk)c − 1

]
.

Therefore,

T−1
T∑
i=1

yi∆ =⇒ σN1/2

{
Ξ2 +

1

c

K∑
k=1

φk
σN1/2

[
e(1−rk)c − 1

]}
≡ σN1/2Ξ̃2.

(c) The quantity

T−1
T∑
i=1

y2
i∆ =T−1

T∑
i=1

α0
1− eiθ∆

1− eθ∆
+ λ0

i∑
j=1

e(i−j)θ∆εj∆ + eiθ∆y0 +
i∑

j=1

e(i−j)θ∆
K∑
k=1

φkI
k
j∆

2

= T−1
T∑
i=1

α0
1− eiθ∆

1− eθ∆
+ λ0

i∑
j=1

e(i−j)θ∆εj∆ + eiθ∆y0

2

+ T−1
T∑
i=1

 i∑
j=1

e(i−j)θ∆
K∑
k=1

φkI
k
j∆

2

+ 2T−1
T∑
i=1

(
α0

1− eiθ∆

1− eθ∆

) i∑
j=1

e(i−j)θ∆
K∑
k=1

φkI
k
j∆


+ 2T−1

T∑
i=1

λ0

i∑
j=1

e(i−j)θ∆εj∆

 i∑
j=1

e(i−j)θ∆
K∑
k=1

φkI
k
j∆


+ 2T−1

T∑
i=1

eiθ∆y0

 i∑
j=1

e(i−j)θ∆
K∑
k=1

φkI
k
j∆

 .

From the proof of Lemma 2.2 in the online supplement

T−1
T∑
i=1

α0
1− eiθ∆

1− eθ∆
+ λ0

i∑
j=1

e(i−j)θ∆εj∆ + eiθ∆y0

2

=⇒ σ2NΞ3.

The second term

T−1
T∑
i=1

 i∑
j=1

e(i−j)θ∆
K∑
k=1

φkI
k
j∆

2

= T−1
T∑
i=1

 K∑
k=1

φk

i∑
j=1

e(i−j)θ∆Ikj∆

2

.

If K = 1, we have

T−1
T∑
i=1

 K∑
k=1

φk

i∑
j=1

e(i−j)θ∆Ikj∆

2

= T−1
T∑

i=τ1

φ2
1e

2(i−τ1)θ∆ =
∆

N
φ2

1

e2c(1−r1) − 1

e2θ∆ − 1
→ φ2

1

1

2c

[
e2c(1−r1) − 1

]
.
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If K > 1,

T−1
T∑
i=1

 K∑
k=1

φk

i∑
j=1

e(i−j)θ∆Ikj∆

2

= T−1
K−1∑
k=1

τk+1−1∑
i=τk

 k∑
j=1

φje
(i−τj)θ∆

2

+ T−1
T∑

i=τK

 K∑
j=1

φje
(i−τj)θ∆

2

= T−1
K−1∑
k=1

τk+1−1∑
i=τk

e2iθ∆

 k∑
j=1

φje
−τjθ∆

2

+ T−1
T∑

i=τK

e2iθ∆

 K∑
j=1

φje
−τjθ∆

2

= T−1
K−1∑
k=1

 k∑
j=1

φje
−τjθ∆

2τk+1−1∑
i=τk

e2iθ∆

+ T−1

 K∑
j=1

φje
−τjθ∆

2
T∑

i=τK

e2iθ∆

= T−1
K−1∑
k=1

 k∑
j=1

φje
−τjθ∆

2 [
e2rkθ

1− e2θ(rk+1−rk)

1− e2θ∆

]
+ T−1

 K∑
j=1

φje
−τjθ∆

2 [
e2rKθ

1− e2θ(1−rK)

1− e2θ∆

]

→ 1

2c

K−1∑
k=1

 k∑
j=1

φje
−rjθ

2

e2rkθ
[
e2θ(rk+1−rk) − 1

]
+

 K∑
j=1

φje
−rjθ

2

e2rKθ
[
e2θ(1−rK) − 1

] .
The third term

2T−1
T∑
i=1

(
α0

1− eiθ∆

1− eθ∆

) i∑
j=1

e(i−j)θ∆
K∑
k=1

φkI
k
j∆


= 2

α0

1− eθ∆
T−1

T∑
i=1

 i∑
j=1

e(i−j)θ∆
K∑
k=1

φkI
k
j∆

− 2
α0

1− eθ∆
T−1

T∑
i=1

eiθ∆

 i∑
j=1

e(i−j)θ∆
K∑
k=1

φkI
k
j∆


= 2µT−1

K∑
k=1

φk

T∑
i=1

i∑
j=1

e(i−j)θ∆Ikj∆ − 2µT−1
K∑
k=1

φk

T∑
i=1

i∑
j=1

eiθ∆e(i−j)θ∆Ikj∆

= 2µT−1
K∑
k=1

φke
−τkθ∆

T∑
i=τk

eiθ∆ − 2µT−1
K∑
k=1

φke
−τkθ∆

T∑
i=τk

e2iθ∆

= 2µT−1
K∑
k=1

φke
−τkθ∆

 T∑
i=τk

eiθ∆ −
T∑

i=τk

e2iθ∆


=

µ

c

K∑
k=1

φk

[
2ec(1−rk) − 2− ec(2−rk) + erkc

]
.

The fourth term

2T−1
T∑
i=1

λ0

 i∑
j=1

e(i−j)θ∆εj∆

 i∑
j=1

e(i−j)θ∆
K∑
k=1

φkI
k
j∆


= 2λ0T

−1
K∑
k=1

φk

T∑
i=1

 i∑
j=1

e(i−j)θ∆εj∆

 i∑
j=1

e(i−j)θ∆Ikj∆


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= 2λ0T
1/2

K∑
k=1

φk

 1

T

T∑
i=τk

e(i−τk)θ∆

T−1/2
i∑

j=1

e(i−j)θ∆εj∆


=⇒ 2σN1/2

K∑
k=1

φk

∫ 1

rk

ec(r−rk)Jc (r) dr.

The fifth term

2T−1
T∑
i=1

eiθ∆y0

 i∑
j=1

e(i−j)θ∆
K∑
k=1

φkI
k
j∆

 = 2y0T
−1

K∑
k=1

φk

T∑
i=1

 i∑
j=1

eiθ∆e(i−j)θ∆Ikj∆


= 2y0T

−1
K∑
k=1

φk

T∑
i=τk

e(2i−τk)θ∆

= 2y0

K∑
k=1

φk

e−τkθ∆T−1
T∑

i=τk

e2iθ∆


=

y0

c

K∑
k=1

φke
rkc
[
e2c(1−rk) − 1

]
.

Therefore,

T−1
T∑
i=1

y2
(i−1)∆ =⇒ σ2NΞ3 +

1

2c

K∑
k=1

φ2
k

[
e2(1−rk)c − 1

]
+
µ

c

K∑
k=1

φk

[
2ec(1−rk) − 2− ec(2−rk) + erkc

]
+ 2σN1/2

K∑
k=1

φk

∫ 1

rk

ec(r−rk)Jc (r) dr +
y0

c

K∑
k=1

φke
rkc
[
e2c(1−rk) − 1

]
= σ2N

{
Ξ3 + ∆3 +

1

c

µ

σN1/2

K∑
k=1

φk
σN1/2

[
2ec(1−rk) − 2− ec(2−rk) + erkc

]
+2

K∑
k=1

φk
σN1/2

∫ 1

rk

ec(r−rk)Jc (r) dr +
1

c

y0

σN1/2

K∑
k=1

φk
σN1/2

erkc
[
e2c(1−rk) − 1

]}
≡ σ2N Ξ̃3,

where

∆3 =


φ2
1

σ2N
1
2c

[
e2c(1−r1) − 1

]
if K = 1

1
2c

[∑K−1
k=1

(∑k
j=1

φj

σN1/2 e
−rjθ

)2

e2rkθ
[
e2θ(rk+1−rk) − 1

]
+
(∑K

j=1
φj

σN1/2 e
−rjθ

)2

e2rKθ
[
e2θ(1−rK) − 1

]]
if K > 1

.

(d) By squaring (10), subtracting y2
(i−1)∆ from both sides, summing over i = 1, ..., T , re-organizing

the equation, and multiplying T−1 such that

T−1/2
T∑
i=1

y(i−1)∆εi∆

=
T−1/2

2eθ∆λ0

[
T∑
i=1

(
y2
i∆ − y2

(i−1)∆

)
− Tα2

0 −
(
e2θ∆ − 1

) T∑
i=1

y2
(i−1)∆ − λ

2
0

T∑
i=1

ε2
i∆ − 2α0e

θ∆
T∑
i=1

y(i−1)∆
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−2α0λ0

T∑
i=1

εi∆ −
T∑
i=1

(
K∑
k=1

φkI
k
i∆

)2

− 2α0

T∑
i=1

K∑
k=1

φkI
k
i∆ − 2eθ∆

T∑
i=1

y(i−1)∆

K∑
k=1

φkI
k
i∆ − 2λ0

T∑
i=1

(
K∑
k=1

φkI
k
i∆

)
εi∆

 .
From (a), (b) and (c),

T−1/2

2eθ∆λ0

[
T∑
i=1

(
y2
i∆ − y2

(i−1)∆

)
− Tα2

0 −
(
e2θ∆ − 1

) T∑
i=1

y2
(i−1)∆ − λ

2
0

T∑
i=1

ε2
i∆ − 2α0e

θ∆
T∑
i=1

y(i−1)∆ − 2α0λ0

T∑
i=1

εi∆

]

=⇒ σN1/2

2

[
Ξ̃2

1 −
y2

0

σ2N
− 2cΞ̃3 − 1 + 2c

µ

σN1/2
Ξ̃2

]
.

Moreover,

T∑
i=1

(
K∑
k=1

φkI
k
i∆

)2

=
K∑
k=1

φ2
k

T∑
i=1

Iki∆ =
K∑
k=1

φ2
k;

2α0

T∑
i=1

K∑
k=1

φkI
k
i∆ = 2µ

(
1− eθ∆

) K∑
k=1

φk

T∑
i=1

Iki∆ = 2µ
(

1− eθ∆
) K∑
k=1

φk → 0;

2λ0

T∑
i=1

(
K∑
k=1

φkI
k
i∆

)
εi∆ = 2λ0

K∑
k=1

φk

T∑
i=1

Iki∆εi∆ = 2λ0

K∑
k=1

φkετk∆ → 0;

and

2eθ∆
T∑
i=1

y(i−1)∆

K∑
k=1

φkI
k
i∆

= 2eθ∆
K∑
k=1

φk

T∑
i=1

y(i−1)∆I
k
i∆ = 2eθ∆

K∑
k=1

φky(τk−1)∆

= 2eθ∆
K∑
k=1

φk

α0
1− e(τk−1)θ∆

1− eθ∆
+ λ0

τk−1∑
j=1

e(τk−1−j)θ∆εj∆ + e(τk−1)θ∆y0 +

τk−1∑
j=1

e(τk−1−j)θ∆
K∑
s=1

φsI
s
j∆


=⇒ 2σ2N

K∑
k=1

φk
N1/2σ

[ µ

N1/2σ
(1− erkc) + Jc (rk) + erkc

y0

N1/2σ
+ ∆4

]
, (27)

where ∆4 = 0 if K = 1 and ∆4 =
∑k−1

j=1 e
(rk−rj)θ φj

N1/2σ
if K > 1. This is because

α0
1− e(τk−1)θ∆

1− eθ∆
+λ0

τk−1∑
j=1

e(τk−1−j)θ∆εj∆+e(τk−1)θ∆y0 =⇒ N1/2σ
[ µ

N1/2σ
(1− erkc) + Jc (rk) + erkc

y0

N1/2σ

]
and

τk−1∑
j=1

e(τk−1−j)θ∆
K∑
s=1

φsI
s
j∆ =

{ ∑K
s=1 φse

(τk−1)θ∆
∑τk−1

j=1 e−jθ∆Isj∆ = 0 if K = 1∑k−1
j=1 e

(τk−1−τj)θ∆φj → N1/2σ
∑k−1

j=1 e
(rk−rj)θ φj

N1/2σ
if K > 1

.

Therefore,

T−1/2
T∑
i=1

y(i−1)∆εi∆ =
σN1/2

2

{
Ξ̃2

1 −
y2

0

σ2N
− 2cΞ̃3 − 1 + 2c

µ

σN1/2
Ξ̃2 −

K∑
k=1

φ2
k

σ2N
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−2

K∑
k=1

φk
N1/2σ

[ µ

N1/2σ
(1− erkc) + Jc (rk) + erkc

y0

N1/2σ
+ ∆4

]}
= σN1/2Ξ̃4.

Appendix C: the DF J Test Statistic

The least square estimators of the standardized intercept and the autoregressive coefficients with
regression (11) are


α̃− α0

φ̃1 − φ1
...

φ̃K − φK
β̃ − β0

 = σ
√

∆


T

∑
I1
i∆ · · ·

∑
IKi∆

∑
y(i−1)∆∑

I1
i∆

∑(
I1
i∆

)2 · · ·
∑
I1
i∆I

K
i∆

∑
I1
i∆y(i−1)∆

...
... · · ·

...
...∑

IKi∆
∑
IKi∆I

1
i∆ · · ·

∑(
IKi∆
)2 ∑

IKi∆y(i−1)∆∑
y(i−1)∆

∑
y(i−1)∆I

1
i∆ · · ·

∑
y(i−1)∆I

K
i∆

∑
y2

(i−1)∆



−1 

∑
εi∆∑

I1
i∆εi∆
...∑

IKi∆εi∆∑
y(i−1)∆εi∆

 .

Let
∑

denote summation over i = 1, · · · , T . Based on Lemma 3.1(d) and 3.2(d), the appropriate

scaling matrix is ΥTn = diag
(√

T , 1, · · · , 1,
√
T
)

. Pre-multiplying the above equation by ΥT leads

to

T 1/2ΥT


α̃− α0

φ̃1 − φ1

...

φ̃K − φK
β̃ − β0

 = σN1/2


Υ−1
T


T

∑
I1
i∆ · · ·

∑
IKi∆

∑
y(i−1)∆∑

I1
i∆

∑(
I1
i∆

)2 · · ·
∑
I1
i∆I

K
i∆

∑
I1
i∆y(i−1)∆

...
... · · ·

...
...∑

IKi∆
∑
IKi∆I

1
i∆ · · ·

∑(
IKi∆
)2 ∑

IKi∆y(i−1)∆∑
y(i−1)∆

∑
y(i−1)∆I

1
i∆ · · ·

∑
y(i−1)∆I

K
i∆

∑
y2

(i−1)∆

Υ−1
T



−1

Υ−1
T



∑
εi∆∑

I1
i∆εi∆
...∑

IKi∆εi∆∑
y(i−1)∆εi∆


with α0 = 0 and β0 = 1 under the null. The first term

Υ−1
T


T

∑
I1
i∆ · · ·

∑
IKi∆

∑
y(i−1)∆∑

I1
i∆

∑(
I1
i∆

)2 · · ·
∑
I1
i∆I

K
i∆

∑
I1
i∆y(i−1)∆

...
... · · ·

...
...∑

IKi∆
∑
IKi∆I

1
i∆ · · ·

∑(
IKi∆
)2 ∑

IKi∆y(i−1)∆∑
y(i−1)∆

∑
y(i−1)∆I

1
i∆ · · ·

∑
y(i−1)∆I

K
i∆

∑
y2

(i−1)∆

Υ−1
T

=


1 T−1/2

∑
I1
i∆ · · · T−1/2

∑
IKi∆ T−1

∑
y(i−1)∆

T−1/2
∑
I1
i∆

∑(
I1
i∆

)2 · · ·
∑
I1
i∆I

K
i∆ T−1/2

∑
I1
i∆y(i−1)∆

...
... · · ·

...
...

T−1/2
∑
IKi∆

∑
IKi∆I

1
i∆ · · ·

∑(
IKi∆
)2

T−1/2
∑
IKi∆y(i−1)∆

T−1
∑
y(i−1)∆ T−1/2

∑
y(i−1)∆I

1
i∆ · · · T−1/2

∑
y(i−1)∆I

K
i∆ T−1

∑
y2

(i−1)∆


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=


1 T−1/2 · · · T−1/2 T−1

∑
y(i−1)∆

T−1/2 1 · · · 0 T−1/2y(τ1−1)∆
...

... · · ·
...

...

T−1/2 0 · · · 1 T−1/2y(τK−1)∆

T−1
∑
y(i−1)∆ T−1/2y(τ1−1)∆ · · · T−1/2y(τK−1)∆ T−1

∑
y2

(i−1)∆

 .

The second term

Υ−1
T



∑
εi∆∑

I1
i∆εi∆
...∑

IKi∆εi∆∑
y(i−1)∆εi∆

 =


T−1/2

∑
εi∆∑

I1
i∆εi∆
...∑

IKi∆εi∆
T−1/2

∑
y(i−1)∆εi∆

 .
Proof of Theorem 3.1. Under the null hypothesis of (9), from Lemma 3.1, the first term

Υ−1
T


T

∑
I1
i∆ · · ·

∑
IKi∆

∑
y(i−1)∆∑

I1
i∆

∑(
I1
i∆

)2 · · ·
∑
I1
i∆I

K
i∆

∑
I1
i∆y(i−1)∆

...
... · · ·

...
...∑

IKi∆
∑
IKi∆I

1
i∆ · · ·

∑(
IKi∆
)2 ∑

IKi∆y(i−1)∆∑
y(i−1)∆

∑
y(i−1)∆I

1
i∆ · · ·

∑
y(i−1)∆I

K
i∆

∑
y2

(i−1)∆

Υ−1
T ⇒


1 0 · · · 0 σN1/2Ψ̃2

0 1 · · · 0 0
...

... · · ·
...

...
0 0 · · · 1 0

σN1/2Ψ̃2 0 · · · 0 σ2NΨ̃3


and the second term

Υ−1
T



∑
εi∆∑

I1
i∆εi∆
...∑

IKi∆εi∆∑
y(i−1)∆εi∆

⇒


w1

ετ1
...
ετK

σN1/2Ψ̃4

 .
Combing these two terms, we have

T α̃

T 1/2
(
φ̃1 − φ1

)
...

T 1/2
(
φ̃K − φK

)
T
(
β̃ − 1

)


⇒ σN1/2


1 0 · · · 0 σN1/2Ψ̃2

0 1 · · · 0 0
...

... · · ·
...

...
0 0 · · · 1 0

σN1/2Ψ̃2 0 · · · 0 σ2NΨ̃3


−1 

w1

ετ1
...
ετK

σN1/2Ψ̃4

 =



σN1/2 Ψ̃3w1−Ψ̃2Ψ̃4

Ψ̃3−Ψ̃2
2

σN1/2ετ1
...

σN1/2ετK
Ψ̃4−Ψ̃2w1

Ψ̃3−Ψ̃2
2


.

Therefore,

T α̃ ⇒ σN1/2 Ψ̃3w1 − Ψ̃2Ψ̃4

Ψ̃3 − Ψ̃2
2

T 1/2
(
φ̃k − φk

)
⇒ N

(
0, σ2N

)
for k = 1, . . . ,K

T
(
β̃ − 1

)
⇒ Ψ̃4 − Ψ̃2w1

Ψ̃3 − Ψ̃2
2

.

The estimated error variance

σ̃2
v =

∑(
yi∆ − β̃y(i−1)∆ − α̃−

K∑
k=1

φ̃kI
k
i∆

)2
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=
∑[

σ
√

∆εi∆ −
(
β̃ − 1

)
y(i−1)∆ − α̃+

K∑
k=1

(
φ̃k − φk

)
Iki∆

]2

= σ2∆
∑

ε2
i∆ +

(
β̃ − 1

)2∑
y2

(i−1)∆ + α̃2 +
∑(

K∑
k=1

(
φ̃k − φk

)
Iki∆

)2

−2σ
√

∆
(
β̃ − 1

)∑
y(i−1)∆εi∆ − 2σ

√
∆α̃

∑
εi∆ + 2σ

√
∆
∑(

K∑
k=1

(
φ̃k − φk

)
Iki∆

)
εi∆

+2
(
β̃ − 1

)
α̃
∑

y(i−1)∆ − 2
(
β̃ − 1

)∑
y(i−1)∆

K∑
k=1

(
φ̃k − φk

)
Iki∆ − 2α̃

∑ K∑
k=1

(
φ̃k − φk

)
Iki∆

= σ2∆
∑

ε2
i∆ [1 + op (1)]→ σ2N

from Lemma 3.1 and the fact that α̃ = Op
(
T−1

)
, β̃ − 1 = Op

(
T−1

)
, and φ̃k − φk = Op

(
T−1/2

)
,

DF J =

(
β̃ − 1

)[
T
∑T

j=1 y
2
j∆ −

(∑T
j=1 y(j−1)∆

)2
]1/2

[∑T
j=1

(
yi∆ − β̃y(i−1)∆ − α̃−

∑K
k=1 φ̃kI

k
i∆

)2
]1/2

=⇒ Ψ̃4 − Ψ̃2w1(
Ψ̃3 − Ψ̃2

2

)1/2
.

Proof of Theorem 3.2. Under the alternative hypothesis of (10), from Lemma 3.2, the first term

Υ−1
T


T

∑
I1
i∆ · · ·

∑
IKi∆

∑
y(i−1)∆∑

I1
i∆

∑(
I1
i∆

)2 · · ·
∑
I1
i∆I

K
i∆

∑
I1
i∆y(i−1)∆

...
... · · ·

...
...∑

IKi∆
∑
IKi∆I

1
i∆ · · ·

∑(
IKi∆
)2 ∑

IKi∆y(i−1)∆∑
y(i−1)∆

∑
y(i−1)∆I

1
i∆ · · ·

∑
y(i−1)∆I

K
i∆

∑
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Υ−1
T ⇒


1 0 · · · 0 σN1/2Ξ̃2

0 1 · · · 0 0
...

... · · ·
...

...
0 0 · · · 1 0

σN1/2Ξ̃2 0 · · · 0 σ2N Ξ̃3


and the second term

Υ−1
T



∑
εi∆∑

I1
i∆εi∆
...∑

IKi∆εi∆∑
y(i−1)∆εi∆

⇒


w1

ετ1
...
ετK

σN1/2Ξ̃4

 .
Combing these two terms, we have

T (α̃− α0)

T 1/2
(
φ̃1 − φ1

)
...

T 1/2
(
φ̃K − φK

)
T
(
β̃ − β0

)


⇒ σN1/2


1 0 · · · 0 σN1/2Ξ̃2

0 1 · · · 0 0
...

... · · ·
...

...
0 0 · · · 1 0

σN1/2Ξ̃2 0 · · · 0 σ2N Ξ̃3


−1 

w1

ετ1
...
ετK

σN1/2Ξ̃4

 =



σN1/2 Ξ̃3w1−Ξ̃2Ξ̃4

Ξ̃3−Ξ̃2
2

σN1/2ετ1
...

σN1/2ετK
Ξ̃4−Ξ̃2w1
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2


.
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Similarly, we can show that the error variance σ̃2
v =

∑(
yi∆ − β̃y(i−1)∆ − α̃−

∑K
k=1 φ̃kI

k
i∆

)2
=

σ2∆
∑
ε2
i∆ [1 + op (1)]→ σ2N . From Lemma 3.2 and the results that β̃ − β0 = Op

(
T−1

)

DF =

(
β̃ − 1

)[
T
∑T

j=1 y
2
j∆ −

(∑T
j=1 y(j−1)∆

)2
]1/2

[∑T
j=1

(
yi∆ − β̃y(i−1)∆ − α̃−

∑K
k=1 φ̃kI

k
i∆

)2
]1/2

=⇒ Ξ̃4 − Ξ̃2w1(
Ξ̃3 − Ξ̃2

2

)1/2
+ c

(
Ξ̃3 − Ξ̃2

2

)1/2
.

Appendix D: the DF Test Statistic in the Presence of Jumps

Proof of Theorem 3.3. The least square estimators of the standardized intercept and the
autoregressive coefficients with regression (4), under the DGP of (9), are[

α̂

β̂ − 1

]
=

[
T

∑
y(j−1)∆∑

y(j−1)∆

∑
y2

(j−1)∆

]−1
([ ∑K

k=1 φk
∑
Ikj∆∑K

k=1 φk
∑
y(j−1)∆I

k
j∆

]
+ σ
√

∆

[ ∑
εj∆∑

y(j−1)∆εj∆

])
.

Pre-multiplying the above equation by ΥTn = diag
(√

T ,
√
T
)

leads to

T 1/2ΥTn

[
α̂

β̂ − 1

]
=

{
Υ−1
Tn

[
T

∑
y(j−1)∆∑

y(j−1)∆

∑
y2

(j−1)∆

]
Υ−1
Tn

}−1
[ ∑K

k=1 φk + σ
√

∆
∑
εj∆∑K

k=1 φky(τk−1)∆ + σ
√

∆
∑
y(j−1)∆εj∆

]
.

The first term

Υ−1
Tn

[
T

∑
y(j−1)∆∑

y(j−1)∆

∑
y2

(j−1)∆

]
Υ−1
Tn

=

[
T T−1

∑
y(j−1)∆

T−1
∑
y(j−1)∆ T−1

∑
y2

(j−1)∆

]
⇒
[

1 σN1/2Ψ̃2

σN1/2Ψ̃2 σ2NΨ̃3

]
.

For the second term,[ ∑K
k=1 φk + σ

√
∆
∑
εj∆∑K

k=1 φky(τk−1)∆ + σ
√

∆
∑
y(j−1)∆εj∆

]
=

[ ∑K
k=1 φk + σN1/2

(
T−1/2

∑
εj∆
)∑K

k=1 φky(τk−1)∆ + σN1/2
(
T−1/2

∑
y(j−1)∆εj∆

) ]

⇒

 σN1/2
(∑K

k=1
φk

σN1/2 + w1

)
σ2N

[∑K
k=1

φk
σN1/2 (wrk + γ + ∆2) + Ψ̃4

]  .
Combing these two terms, we have[

T α̂

T
(
β̂ − 1

) ] ⇒
[

1 σN1/2Ψ̃2

σN1/2Ψ̃2 σ2NΨ̃3

]−1
 σN1/2

(∑K
k=1

φk
σN1/2 + w1

)
σ2N

[∑K
k=1

φk
σN1/2 (wrk + γ + ∆2) + Ψ̃4

] 
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=

 σN1/2
Ψ̃3w1−Ψ̃2Ψ̃4+

∑K
k=1

φk

σN1/2 [Ψ̃3−Ψ̃2(wrk+γ+∆2)]
Ψ̃3−Ψ̃2

2

Ψ̃4−Ψ̃2w1+
∑K
k=1

φk

σN1/2 (wrk+γ+∆2−Ψ̃2)
Ψ̃3−Ψ̃2

2

 .
Furthermore,

σ̂2
v =

∑(
yj∆ − β̂y(j−1)∆ − α̂

)2

=
∑[

σ
√

∆εj∆ −
(
β̂ − 1

)
y(j−1)∆ − α̂+

K∑
k=1

φkI
k
j∆

]2

= σ2∆
∑

ε2
j +

(
β̂ − 1

)2∑
y2

(j−1)∆ + α̂2 +
∑(

K∑
k=1

φkI
k
j∆

)2

−2σ
√

∆
(
β̂ − 1

)∑
y(j−1)∆εj∆ − 2σ

√
∆α̂

∑
εj + 2σ

√
∆
∑(

K∑
k=1

φkI
k
j∆

)
εj∆

+2
(
β̂ − 1

)
α̂
∑

y(j−1)∆ − 2
(
β̂ − 1

)∑
y(j−1)∆

K∑
k=1

φkI
k
j∆ − 2α̂

∑ K∑
k=1

φkI
k
j∆

=

σ2∆
∑

ε2
j +

∑(
K∑
k=1

φkI
k
j∆

)2
 {1 + op (1)}

→ σ2N

(
1 +

K∑
k=1

φ2
k

σ2N

)

from Lemma 3.1 and the fact that α̃ = Op
(
T−1

)
, and β̃ − 1 = Op

(
T−1

)
. The DF statistic is

DF =

(
β̂ − 1

)[
T
∑T

j=1 y
2
j∆ −

(∑T
j=1 y(j−1)∆

)2
]1/2

[∑T
j=1

(
yj∆ − α̂− β̂y(j−1)∆

)2
]1/2

=⇒

Ψ̃4 − Ψ̃2w1

Ψ̃3 − Ψ̃2
2

+

∑K
k=1

φk
σN1/2

(
wrk + γ + ∆2 − Ψ̃2

)
Ψ̃3 − Ψ̃2

2

 Ψ̃3 − Ψ̃2
2

1 +
∑K

k=1
φ2
k

σ2N

1/2

=
Ψ̃4 − Ψ̃2w1 +

∑K
k=1

φk
σN1/2

(
wrk + γ + ∆2 − Ψ̃2

)
(

1 +
∑K

k=1
φ2
k

σ2N

)1/2 (
Ψ̃3 − Ψ̃2

2

)1/2
.

Proof of Theorem 3.4. The least square estimators of the standardized intercept and the
autoregressive coefficients with regression (4), under the DGP of (10), are[

α̂− α0

β̂ − β0

]
=

[
T

∑
y(j−1)∆∑

y(j−1)∆

∑
y2

(j−1)∆

]−1

([ ∑K
k=1 φk

∑
Ikj∆∑K

k=1 φk
∑
y(j−1)∆I

k
j∆

]
+ λ0

[ ∑
εj∆∑

y(j−1)∆εj∆

])
.
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Pre-multiplying the above equation by ΥTn = diag
(√

T ,
√
T
)

leads to

T 1/2ΥTn

[
α̂− α0

β̂ − β0

]
=

{
Υ−1
Tn

[
T

∑
y(j−1)∆∑

y(j−1)∆

∑
y2

(j−1)∆

]
Υ−1
Tn

}−1
[ ∑K

k=1 φk + λ0
∑
εj∆∑K

k=1 φky(τk−1)∆ + λ0
∑
y(j−1)∆εj∆

]
.

The first term

Υ−1
Tn

[
T

∑
y(j−1)∆∑

y(j−1)∆

∑
y2

(j−1)∆

]
Υ−1
Tn

=

[
T T−1

∑
y(j−1)∆

T−1
∑
y(j−1)∆ T−1

∑
y2

(j−1)∆

]
⇒

[
1 σN

1/2
2 Ξ̃2

σN1/2Ξ̃2 σ2N Ξ̃3

]
.

For the second term,[ ∑K
k=1 φk + λ0

∑
εj∆∑K

k=1 φky(τk−1)∆ + λ0
∑
y(j−1)∆εj∆

]
=

[ ∑K
k=1 φk + T 1/2λ0

(
T−1/2

∑
εj∆
)∑K

k=1 φky(τk−1)∆ + T 1/2λ0

(
T−1/2

∑
y(j−1)∆εj∆

) ]

=⇒

 σN1/2
(∑K

k=1 ςk + w1

)
σ2N

{∑K
k=1 ςk [δ (1− erkc) + Jc (rk) + erkcγ + ∆4] + Ξ̃4

}  .
Combing these two terms, we have[

T (α̂− α0)

T
(
β̂ − β0

) ]

⇒

[
1 σN

1/2
2 Ξ̃2

σN
1/2
2 Ξ̃2 σ2N Ξ̃3

]−1
 σN1/2

(∑K
k=1 ςk + w1

)
σ2N

{∑K
k=1 ςk [δ (1− erkc) + Jc (rk) + erkcγ + ∆4] + Ξ̃4

} 
=

 σN1/2 Ξ̃3w1−Ξ̃2Ξ̃4+
∑K
k=1 ςk[Ξ̃3−[δ(1−erkc)+Jc(rk)+erkcγ+∆4]Ξ̃2]

Ξ̃3−Ξ̃2
2

Ξ̃4−Ξ̃2w1+
∑K
k=1 ςk[δ(1−erkc)+Jc(rk)+erkcγ+∆4−Ξ̃2]

Ξ̃3−Ξ̃2
2

 .
Furthermore,

σ̂2
v =

∑(
yj∆ − β̂y(j−1)∆ − α̂

)2

=
∑[

λ0εj∆ −
(
β̂ − β0

)
y(j−1)∆ − (α̂− α0) +

K∑
k=1

φkI
k
j∆

]2

= λ2
0

∑
ε2
j +

(
β̂ − β0

)2∑
y2

(j−1)∆ + (α̂− α0)2 +
∑(

K∑
k=1

φkI
k
j∆

)2

−2λ0

(
β̂ − β0

)∑
y(j−1)∆εj∆ − 2λ0 (α̂− α0)

∑
εj + 2λ0

∑(
K∑
k=1

φkI
k
j∆

)
εj∆

+2
(
β̂ − 1

)
(α̂− α0)

∑
y(j−1)∆ − 2

(
β̂ − 1

)∑
y(j−1)∆

K∑
k=1

φkI
k
j∆ − 2 (α̂− α0)

∑ K∑
k=1

φkI
k
j∆
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=

λ2
0

∑
ε2
j +

∑(
K∑
k=1

φkI
k
j∆

)2
 {1 + op (1)}

→ σ2N

(
1 +

K∑
k=1

φ2
k

σ2N

)

from Lemma 3.1 and the fact that α̃ = Op
(
T−1

)
, and β̃ − 1 = Op

(
T−1

)
. The DF statistic is

DF =

(
β̂ − 1

)[
T
∑T
j=1 y

2
j∆ −

(∑T
j=1 y(j−1)∆

)2
]1/2

[∑T
j=1

(
yj∆ − α̂− β̂y(j−1)∆

)2
]1/2

=⇒
Ξ̃4 − Ξ̃2w1 +

∑K
k=1 ςk

[
δ (1− erkc) + Jc (rk) + erkcγ + ∆4 − Ξ̃2

]
Ξ̃3 − Ξ̃2

2

(
Ξ̃3 − Ξ̃2

2

1 +
∑K
k=1

φ2
k

σ2N

)1/2

+ c

(
Ξ̃3 − Ξ̃2

2

1 +
∑K
k=1

φ2
k

σ2N

)1/2

=
Ξ̃4 − Ξ̃2w1 +

∑K
k=1 ςk

[
δ (1− erkc) + Jc (rk) + erkcγ + ∆4 − Ξ̃2

]
(

1 +
∑K
k=1

φ2
k

σ2N

)1/2 (
Ξ̃3 − Ξ̃2

2

)1/2
+ c

(
Ξ̃3 − Ξ̃2

2

1 +
∑K
k=1

φ2
k

σ2N

)1/2

.

Appendix D: Asymptotics of DF Ĵ

Proof of Theorem 3.5. The null and alternative models can be written in matrix form as follows:

Y = Xθ0 + σ
√

∆ε and Y = Xθ1 + λ0ε,

where Y = [y1∆, y2∆, · · · , yT∆]′, xi∆ =
[
1, I1

i∆, . . . , I
K
i∆, y(i−1)∆

]′
, X = [x1∆, x2∆, . . . , xT∆]′, θ0 =

(0, φ1, . . . , φK , 1), θ1 = (α0, φ1, . . . , φK , β0), ε = [ε1∆, ε2∆, · · · , εT∆]′. The regression model is

Y = X̂θ + v,

where x̂i∆ =
[
1, Î1

i∆, . . . , Î
K̂
i∆, y(i−1)∆

]′
, X̂ = [x̂1∆, x̂2∆, . . . , x̂T∆]′, θ =

(
α, φ1, . . . , φK̂ , β

)
, and v =

(v1∆, v2∆, . . . , vT∆)′. Let θ̈ =
(
α̈, φ̈1, . . . , φ̈K̂ , β̈

)′
be the OLS estimate of θ. We have

θ̈ =
(
X̂ ′X̂

)−1
X̂ ′Y =

(
X̂ ′X̂

)−1
X̂ ′Xθ0 + σ

√
∆
(
X̂ ′X̂

)−1
X̂ ′ε

under the null and

θ̈ =
(
X̂ ′X̂

)−1
X̂ ′Y =

(
X̂ ′X̂

)−1
X̂ ′Xθ1 + λ0

(
X̂ ′X̂

)−1
X̂ ′ε

under the alternative. Let ΥT = diag
(√

T , 1, · · · , 1,
√
T
)

and Υ∗T = T 1/2ΥT . We have

Υ∗−1
T X̂ ′X̂ =



1 T−1
∑
Î1
i∆ · · · T−1

∑
ÎK̂i∆ T−1

∑
y(i−1)∆

T−1/2
∑
Î1
i∆ T−1/2

∑(
Î1
i∆

)2
· · · T−1/2

∑
Î1
i∆Î

K̂
i∆ T−1/2

∑
Î1
i∆y(i−1)∆

...
... · · ·

...
...

T−1/2
∑
ÎK̂i∆ T−1/2

∑
ÎK̂i∆Î

1
i∆ · · · T−1/2

∑(
ÎK̂i∆

)2
T−1/2

∑
ÎK̂i∆y(i−1)∆

T−1
∑
y(i−1)∆ T−1

∑
y(i−1)∆Î

1
i∆ · · · T−1

∑
y(i−1)∆Î

K̂
i∆ T−1

∑
y2

(i−1)∆


,
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Υ∗−1
T X̂ ′X =


1 T−1

∑
I1
i∆ · · · T−1

∑
IKi∆ T−1

∑
y(i−1)∆

T−1/2
∑
Î1
i∆ T−1/2

∑
Î1
i∆I

1
i∆ · · · T−1/2

∑
Î1
i∆I

K
i∆ T−1/2

∑
Î1
i∆y(i−1)∆

...
... · · ·

...
...

T−1/2
∑
ÎK̂i∆ T−1/2

∑
ÎK̂i∆I

1
i∆ · · · T−1/2

∑
ÎK̂i∆I

K
i∆ T−1/2

∑
ÎK̂i∆y(i−1)∆

T−1
∑
y(i−1)∆ T−1

∑
y(i−1)∆I

1
i∆ · · · T−1

∑
y(i−1)∆I

K
i∆ T−1

∑
y2

(i−1)∆

 ,

and

Υ−1
T X̂ ′X̂Υ−1

T =



1 T−1/2
∑
Î1
i∆ · · · T−1/2

∑
ÎK̂i∆ T−1

∑
y(i−1)∆

T−1/2
∑
Î1
i∆

∑(
Î1
i∆

)2
· · ·

∑
Î1
i∆Î

K̂
i∆ T−1/2

∑
Î1
i∆y(i−1)∆

...
... · · ·

...
...

T−1/2
∑
ÎK̂i∆

∑
ÎK̂i∆Î

1
i∆ · · ·

∑(
ÎK̂i∆

)2
T−1/2

∑
ÎK̂i∆y(i−1)∆

T−1
∑
y(i−1)∆ T−1/2

∑
Î1
i∆y(i−1)∆ · · · T−1/2

∑
ÎK̂i∆y(i−1)∆ T−1

∑
y2

(i−1)∆


.

By construction, we have
∑
Iki∆ = 1,

∑
Îki∆ = 1,

∑
Isi∆I

l
i∆ = 0, and

∑
Îsi∆Î

l
i∆ = 0 for any

s, l, k ∈
[
1, K̂

]
and s 6= l. (1) Under the null hypothesis of (9),

Υ∗−1
T X̂ ′X̂ =⇒


1 0 · · · 0 σN1/2Ψ̃2

0 1 · · · 0 0
...

... · · ·
...

...
0 0 · · · 1 0

σN1/2Ψ̃2 0 · · · 0 σ2NΨ̃3


(K+2)×(K+2)

,

Υ∗−1
T X̂ ′X =⇒


1 0 · · · 0 σN1/2Ψ̃2

0 1 · · · 0 0
...

... · · ·
...

...
0 0 · · · 1 0

σN1/2Ψ̃2 0 · · · 0 σ2NΨ̃3


(K+2)×(K+2)

,

Υ−1
T X̂ ′X̂Υ−1

T =⇒


1 0 · · · 0 σN1/2Ψ̃2

0 1 · · · 0 0
...

... · · ·
...

...
0 0 · · · 1 0

σN1/2Ψ̃2 0 · · · 0 σ2NΨ̃3


(K+2)×(K+2)

using results from Lemma 3.1. Therefore,

θ̈ =
(

Υ∗−1
T X̂ ′X̂

)−1 (
Υ∗−1
T X̂ ′X

)
θ0 + σ

√
∆
(
X̂ ′X̂

)−1
X̂ ′ε ∼ θ0 + σ

√
∆
(
X̂ ′X̂

)−1
X̂ ′ε.

Furthermore,

T 1/2Υ−1
T σ
√

∆X̂ ′ε = T 1/2σ
√

∆


T−1/2

∑
εi∆

ετ̂1∆
...

ετ̂k∆

T−1/2
∑
y(i−1)∆εi∆

 =⇒ σN1/2


w1

ετ1∆
...

ετk∆

σN1/2Ψ̃4


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using results from Lemma 3.1 and Remark 3.2. Therefore,

T 1/2ΥT

(
θ̈ − θ0

)
∼ T 1/2σ

√
∆
(

Υ−1
T X̂ ′X̂Υ−1

T

)−1
Υ−1
T X̂ ′ε =⇒



σN1/2 Ψ̃3w1−Ψ̃2Ψ̃4

Ψ̃3−Ψ̃2
2

σN1/2ετ1
...

σN1/2ετK
Ψ̃4−Ψ̃2w1

Ψ̃3−Ψ̃2
2


.

(2) Under the alternative of (10)

Υ∗−1
T X̂ ′X̂ =⇒


1 0 · · · 0 σN1/2Ξ̃2

0 1 · · · 0 0
...

... · · ·
...

...
0 0 · · · 1 0

σN1/2Ξ̃2 0 · · · 0 σ2N Ξ̃3


(K+2)×(K+2)

,

Υ∗−1
T X̂ ′X =⇒


1 0 · · · 0 σN1/2Ξ̃2

0 1 · · · 0 0
...

... · · ·
...

...
0 0 · · · 1 0

σN1/2Ξ̃2 0 · · · 0 σ2N Ξ̃3


(K+2)×(K+2)

,

Υ−1
T X̂ ′X̂Υ−1

T =⇒


1 0 · · · 0 σN1/2Ξ̃2

0 1 · · · 0 0
...

... · · ·
...

...
0 0 · · · 1 0

σN1/2Ξ̃2 0 · · · 0 σ2N Ξ̃3


(K+2)×(K+2)

using results from Lemma 3.2. Therefore,

θ̈ =
(

Υ∗−1
T X̂ ′X̂

)−1 (
Υ∗−1
T X̂ ′X

)
θ1 + λ0

(
X̂ ′X̂

)−1
X̂ ′ε ∼ θ1 + λ0

(
X̂ ′X̂

)−1
X̂ ′ε.

Furthermore,

T 1/2Υ−1
T λ0X̂

′ε = T 1/2λ0


T−1/2

∑
εi∆

ετ̂1∆
...

ετ̂k∆

T−1/2
∑
y(i−1)∆εi∆

 =⇒ σN1/2


w1

ετ1∆
...

ετk∆

σN1/2Ξ̃4


using results from Lemma 3.2 and Remark 3.2. Therefore, we have

T 1/2ΥT

(
θ̈ − θ1

)
∼ T 1/2λ0

(
Υ−1
T X̂ ′X̂Υ−1

T

)−1
Υ−1
T X̂ ′ε =⇒



σN1/2 Ξ̃3w1−Ξ̃2Ξ̃4

Ξ̃3−Ξ̃2
2

σN1/2ετ1
...

σN1/2ετK
Ξ̃4−Ξ̃2w1

Ξ̃3−Ξ̃2
2


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under the alternative.

One can see that the limiting properties of θ̈ are identical to those of θ̃ =
(
α̃, φ̃1, . . . , φ̃K̂ , β̃

)′
under both the null and the alternative. The remaining part of the proof is analogous to those in
Theorem 3.1 and 3.2. That is,

DF Ĵ =⇒ Ψ̃4 − Ψ̃2w1(
Ψ̃3 − Ψ̃2

2

)1/2

under the null hypothesis and

DF Ĵ =⇒ Ξ̃4 − Ξ̃2w1(
Ξ̃3 − Ξ̃2

2

)1/2
+ c

(
Ξ̃3 − Ξ̃2

2

)1/2

under the alternative.
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