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Abstract

Beta coefficients are the cornerstone of asset pricing theory in the CAPM and
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real data. The analysis is performed on the U.S. and developed Europe REIT
markets over the period 2009-2019 via a two-factor model. We evaluate the
performance of the different techniques in terms of in-sample estimates as well as
through an out-of-sample tracking exercise. Results show that dynamic models
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1 Introduction

More than fifty years after its birth, Sharpe and Lintner’s Capital Asset Pricing Model
(CAPM) is still widely used by academics and practitioners to measure the performance of
managed portfolios or to estimate the cost of equity for companies. A common practice
within the financial industry consists in estimating linear time series models via an ordinary
least square (OLS) regression, so that the slope coefficients (the betas) are assumed to be
constant over the estimation period.

However, both theoretically and empirically, many studies have shown that betas may
vary over time, meaning that the assumption of constancy is erroneous and potentially mis-
leading. As a result, models that assume the constancy of parameters tend to be misspecified,
which can lead to poor estimations, irrelevant forecasts and eventually bad financial deci-
sions.

In order to model time-varying betas, three main alternatives to the simple OLS regres-
sion are typically used by academics and practitioners: using rolling-window OLS regressions,
computing realized measures on sub-intervals of high-frequency data so as to obtain a realized
beta and using exogenous interaction variables.

On top of the three alternatives listed above, many more methodologies have flourished
over the years such as state space models with time-varying slope coefficients or Markov-
switching models. More recently, two statistical approaches intended to capture the dynamic
aspects of time series data in the case of multiple betas have been developed. Engle (2016),
extending the work of Bollerslev et al. (1988), introduces a new model called the Dynamic
Conditional Beta (DCB) model, offering a way to indirectly retrieve the time-varying slope
coefficients of the independent variables via an estimate of the full conditional covariance
matrix (using a multivariate GARCH model for instance). This approach is very intuitive and
has the advantage of being easily implementable because MGARCH models are now available
in many econometrics softwares. However, the approach also presents some major drawbacks.
First, testing and imposing the constancy of the conditional betas is not so practical. Second,
it is impossible to introduce exogenous variables in the model and to identify precisely which
ones influence the evolution of the different betas since conditional betas are retrieved after a
non-linear transformation of the elements that compose the estimated conditional covariance
matrix instead of being modeled directly.

Darolles et al. (2018), extending the work of Pourahmadi (1999), take a different direction
and offer a way to directly compute time-varying slope coefficients that depend on their
lagged values and past shocks via a natural orthogonalization of the observed time series.
Their model, called CHAR, which belongs to the class of MGARCH models, can also be used
to obtain time-varying betas. The drawback of this approach is however that this method
requires estimating the full multivariate system (like for the DCB model) even when one
is interested in one equation only. To overcome this problem, building upon this method,
Blasques et al. (2020) propose a new model, called Autoregressive Conditional Beta (ACB)
model, that allows a direct modeling of the conditional betas. This model differs from the
CHAR model due to the fact the dynamics of the conditional betas does not require the
estimation of a system of equations but only a univariate model, with GARCH errors for
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instance.
After reviewing different ways to estimate both static and time-varying betas, we compare

the performance of the most advanced conditional beta modeling techniques, that is to say
the state space, DCB and ACB modeling techniques (with and without additional exogenous
variables) to those of static betas (i.e. OLS and GARCH) in an empirical application focusing
on the REIT market of the United States and developed Europe1 using daily data over the
period 2009-2019. To the best of our knowledge, we are the first to offer a comparison of
these three conditional beta modeling techniques. In particular, we investigate the time
variability of betas in a two-factor model, where βB,t and βM,t are respective measures of
the sensitivity of the REIT index to changes in the bond market and the stock market.
Results show that ACB models clearly outperform other competing models in-sample (when
comparing the models on the basis of their log-likelihood) and that both the state space and
ACB models outperform the other models out-of-sample (in a tracking exercise).

The remainder of the paper is organized as follows. Section 2 introduces the static beta
model in a general framework and Section 3 presents different models used to estimate
time-varying betas.2 Section 4 describes the data and presents the results of the empirical
application on REITs. Finally, Section 5 concludes.

2 Static betas

2.1 One-factor model

The fundamental equation common to most asset pricing models states that the price of
a given asset i at time t, denoted Pi,t, must be equal to the expected discounted value of
its payoff (for more details see, for instance, Cochrane, 2005, Ferson, 2003, and Smith and
Wickens, 2002):

Pi,t = Et[mt+1(Pi,t+1 +Di,t+1)], (1)

where Di,t+1 is the payment (interest or dividend) received at time t + 1, and mt+1 is a
strictly positive random variable used to discount the future payoffs, called the stochastic
discount factor (SDF). Et(.) = E(.|Ωt) denotes the time-t conditional expectation given the
information set Ωt.

Equation (1) assumes that the future payoff and discount factor3 are stochastic: both are
uncertain at date t and are contingent to future states of nature. It is worth noting that this
equation holds for any investment horizon and type of asset (bond, share, option, real estate

1The term ’developed Europe’ stands for the following countries: Austria, Belgium, Finland, France,
Germany, Ireland, Italy, the Netherlands, Norway, Spain, Sweden, Switzerland and the United Kingdom.

2Three main approaches have been used in the literature to evaluate asset pricing models (see for instance
Cochrane, 2005): time series modeling, cross-sectional regressions and calibration. This chapter only deals
with time series models, excluding GMM estimates pioneered by Hansen (1982).

3The relationship between the discount factor mt+1 and the rate dt+1 at which future payoffs are dis-
counted is: mt+1 = 1

1+dt+1
. As a result, an increase in the discount factor mt+1 corresponds to a decrease

in the stochastic discount rate dt+1.
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and so forth) and this without any specific assumption such as complete markets, financial
market equilibrium, investor preference or distribution of asset returns.

Equation (1) can be expressed in terms of returns:

1 = Et(mt+1Ri,t+1), (2)

where Ri,t+1 =
Pi,t+1+Di,t+1

Pi,t
is the gross return of the asset at time t+ 1.

In the case of a risk-free asset whose gross return Rf is known with certainty and assumed
to be constant, Equation (2) implies that the conditional expectation of the SDF is equal to
the inverse of the risk-free rate:

Et(mt+1) = 1/Rf . (3)

Equation (2) can be further developed as follows:

1 = Et(mt+1)Et(Ri,t+1) + covt(mt+1, Ri,t+1), (4)

where covt(.) denotes the time-t expected conditional covariance given the information set
Ωt.

Substituting out Equation (3) into Equation (4) produces

1 =
Et(Ri,t+1)

Rf

+ covt(mt+1, Ri,t+1) (5)

⇒ Et(Ri,t+1)−Rf = −Rfcovt(mt+1, Ri,t+1). (6)

The risk premium Et(Ri,t+1)−Rf required to compensate risk-averse investors for holding
risky assets only depends on the covariance of the payoffs with the discount factor, which
is the only source of risk. This is due to the fact that investors have an incentive to pay
more for assets with high payoffs in adverse conditions and the discount factor is precisely
an index of adverse conditions (Cochrane and Culp, 2003).

The various asset pricing models differ in the way they model the discount factor. Most of
them are based on the implications of consumer/investor intertemporal optimization models.4

For instance, in the basic theoretical Consumption CAPM model (CCAPM) with time-
additive preferences and power utility, the SDF corresponds to the inverse of the marginal
rate of substitution between consumption today and consumption in the next period5

mt+1 =
βU ′(Ct+1)

U ′(Ct)
, (7)

where U ′(Cs) is the marginal utility of consumption at time s, denoted (Cs).
The combination of Equations (6) and (7) sheds light on the mechanism underlying the

determination of asset prices. Assets whose returns covariate negatively with the future

4The first intertemporal CAPM model was developed by Merton (1973) in continuous time and led to a
multi-factor model.

5Recall that the optimization of intertemporal utility in a deterministic model leads to the well-known

Euler equation: U ′(Ct)
βU ′(Ct+1)

= 1+r, where r is the interest rate and the LHS is the marginal rate of substitution.
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marginal utility of consumption are hedging assets because their returns tend to be high
during times of market turbulence.6 Consequently, the expected rate of return on these
assets (and thus their risk premium) must be lower because investors have an incentive to
buy them at a higher spot price.

A Taylor’s series expansion of Equation (7) leads to a linear relationship between mt+1

and the growth of consumption (∆ct+1):
7

mt+1 ≈ β − βκt∆ct+1, (8)

where κt = −CtU”(Ct)

U ′(Ct)
is the consumer/investor’s subjective relative risk aversion coefficient.

Interesting results can be obtained by focusing on wealth rather than on consumption.
Assume that wealth is held through the market portfolio8, i.e. the portfolio of all market

assets weighted according to their relative value. Let RM,t+1 =
Wt+1

Wt

be the gross return of

the market portfolio and rM,t+1 = RM,t+1 − 1 the net return. The investor’s optimization
leads to9

mt+1 ≈ 1 +
WtU”(Wt+1)

U ′(Wt)
rM,t+1 (9)

⇒ mt+1 ≈ (1− γt)− γtRM,t+1, (10)

where U ′(Ws) is the marginal utility of Ws (the wealth at time s), and γt = −WtU”(Wt+1)

U ′(Wt)
is the investor’s subjective relative risk aversion coefficient.10

Dividing both terms of Equation (6) by vart(Ri,t+1|Ωt), we ge

Et(Ri,t+1)−Rf

vart(Ri,t+1)
= −Rf

covt(mt+1, Ri,t+1)

vart(Ri,t+1)
, (11)

where vart(.) = vart(.|Ωt) denotes the time-t expected conditional variance.
Using Equation (10) and assuming for simplicity that Covt(γt, Ri,t+1) = 0, we obtain for

6Since the marginal utility of consumption decreases with the consumption level, an increase in the future
marginal utility corresponds to an unfavorable state of nature.

7See Smith and Wickens (2002).
8The market portfolio may in theory include financial assets, consumer durables, real estate and human

capital (Roll, 1977; Fama and French, 2004). Consequently, the gross market returns RM,t+1 proxied by the
return on an equity index is thus a rather narrow measure.

9See Harvey and Siddique (2000) as well as Phelan and Toda (2015). More to the point, Harvey and
Siddique (2000) suggest a second order approximation of Equation (9) which leads to a non-linear (quadratic)
relation between mt+1 and RM,t+1 in Equation (10).

10As stated by Cochrane (2005), p. 464, γt in Equation (10) represents aversion to bets on wealth while
κt in Equation (8) represents aversion to bets on consumption. γt is thus a more intuitive measure of risk
aversion.
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i = M :

Et(RM,t+1)−Rf

vart(RM,t+1)
= −Rf

covt(mt+1, RM,t+1)

vart(RM,t+1)
(12)

⇒ Et(RM,t+1)−Rf

vart(RM,t+1)
= γtRf . (13)

The result given in Equation (13) is fairly usual in conventional portfolio theories. Indeed,
the risk premium required by an investor to hold the market portfolio is equal to his/her
risk aversion multiplied by the conditional variance of the market portfolio (i.e. the risk):
Et(RM,t+1)−Rf = Rfγtvart(RM,t+1).

11

Substituting out Equations (10) and (13) into Equation (6), the pricing of asset i gives

Et(Ri,t+1)−Rf = −Rfcovt(mt+1, Ri,t+1) (14)

= γtRfcovt(RM,t+1, Ri,t+1) (15)

=
Et(RM,t+1)−Rf

vart(RM,t+1)
covt(RM,t+1, Ri,t+1) (16)

= βi,t [Et(RM,t+1)−Rf ] , (17)

where

βi,t =
covt(RM,t+1, Ri,t+1)

vart(RM,t+1)
. (18)

Equation (17) can be expressed more conveniently in the following form:

Et (r̃i,t+1) = βi,tEt (r̃M,t+1) , (19)

where Et (r̃i,t+1) = Et(Ri,t+1) − Rf , Et (r̃M,t+1) = Et(RM,t+1) − Rf , i.e. respectively the
conditional expectation of the net excess return of asset i and of the market.12

Equation (19) is the Conditional CAPM model, i.e. a conditional version of the theoretical
CAPM proposed by Sharpe (1964) and Lintner (1965). If βi,t is constant and conditional
information plays no role in determining excess returns, then Equation (19) becomes13

E(r̃i) = βE(r̃M), (20)

11Moreover, Equation (13) states that if the risk is measured by the conditional variance, the market price
of risk (LHS) is equal to the investor’s subjective relative risk aversion (discounted by the risk-free rate).

12Recall that the net return of an asset i is linked to the gross return by the definition ri,t+1 = Ri,t+1− 1.
13The basic Sharpe and Lintner’s unconditional CAPM rests on more restrictive assumptions than the

CCAPM given in Equation (17), since it results from the maximization of a single period mean-variance
criterion. As stated by Merton (1973), the single-period utility function only coincides with intertemporal
maximization when preferences and future investment opportunity sets are not state dependent.

As a consequence, the validity of the conditional CAPM does note imply the validity of the unconditional
CAPM. As noted by Wang (1996), the unconditional CAPM can differ from the unconditional expectations
of Equation (17) if Cov(βi,t, RM,t+1) 6= 0, and thus the unconditional beta may differ from the expected
conditional beta (Lewellen and Nagel, 2006). However, if βi,t is a deterministic constant (βi,t = β,∀t) then
the unconditional CAPM and the unconditional expectation of the conditional CAPM are equivalent.
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where E(r̃i) and E(r̃M) are the unconditional expectations of net returns, and β (we omit
the index i to simplify the notation) is the unconditional market beta of asset i.

The CAPM is the most widely studied asset valuation model and is used to estimate the
required rate of return on an asset given a certain level of systematic risk (or market risk),
expressed as the market beta β. While investors are facing two types of risks when investing,
idiosyncratic and systematic risks, only systematic risk is priced since idiosyncratic risk can
totally be offset through diversification. In the theoretical CAPM, market risk is the only
source of systematic risk.

In this framework, the most basic way to estimate the beta of an asset is to run the
simple bivariate OLS regression over the whole sample:

r̃i,t = α + βr̃M,t + εt (21)

εt
i.i.d.∼ D(0, σ2), (22)

where εt captures the idiosyncratic risk of asset i and follows a D distribution (e.g. Gaussian)
with mean 0 and constant variance σ2.

In this case, and from the market model regression, α is expected to be zero. The OLS
estimate of β, is obtained as

β̂OLS =
cov(r̃i, r̃M)

var(r̃M)
, (23)

where Cov(r̃i, r̃M) is the unconditional covariance between the asset’s excess return and the
market excess return, and V ar(r̃M) is the unconditional variance of the market excess return.

One way to relax the restrictive i.i.d. hypothesis on the residuals is to use a univari-
ate GARCH model. The standard GARCH (1,1) model offers the advantage of accounting
for two features which are commonly observed in financial time series data, i.e. leptokur-
tosis (distribution’s excess peakedness and fat tails) and volatility clustering (tendency for
low/high volatility to persist and appear in bunches). In this case, the residuals and the
conditional variance can be specified as

εt = σtzt, zt
i.i.d.∼ D(0, 1), (24)

σ2
t = λ0 + λ1σ

2
t−1 + λ2ε

2
t−1, (25)

where zt is an i.i.d. random variable with mean 0 and unit variance while the conditional
variance at time t, denoted σ2

t , depends on both the lagged squared error term at time t− 1
and the lagged variance term at time t− 1.

2.2 Multiple betas

The Consumption CAPM and conditional CAPM are basically one-factor asset pricing mod-
els. Indeed, Equations (8) and (10) belong to the more general class of linear pricing kernel

mt+1 ≈ a0,t + a1,tF1,t+1 + ...+ aN,tFN,t+1 (26)
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in which F1,t+1, ..., FN,t+1 are variables or factors that are good proxies for growth of marginal
utility.

Many authors have considered the case where the stochastic discount factor can be rep-
resented as a linear function of N factors of the form given by Equation (26). For instance,
in Equation (10), which leads to a conditional CAPM, the return on the market portfolio is
proxied by the return on a stock market index RM,t+1, but this assumption is criticized by
Roll (1977), who argues that this approximation neglects the human capital component in
total wealth. Wang (1996) and other authors suggest that the growth rate of labor income
can be a good proxy for the return on human capital. Under this hypothesis, one can con-
sider an SDF with two factors: the return of a stock market index RM,t+1 and the growth
rate of labor income ∆yt+1: mt+1 ≈ a0,t + a1,tRM,t+1 + a2,t∆yt+1.

Considering Equation (26), Ferson and Jagannathan (1996) show that in the case where
the factors F1,t+1, ..., FN,t+1 are traded assets14 and if the coefficients are defined as follows15

aj,t = −
Et

(
f̃j,t+1

)
Rfvart(Fj,t+1)

, j = 1, ..., N (27)

a0,t =
1

Rf

−
N∑
j=1

aj,t, (28)

where Et

(
f̃j,t+1

)
= Et(Fj,t+1)−Rf denotes the (conditional) expected risk premium of factor

j, then we obtain a multi-factor representation of the conditional CAPM:

Et(r̃i,t+1) =
N∑

n=1

βn,tEt(f̃n,t). (29)

As we have done previously, if all βn,t’s are constant and conditional information plays
no role in determining excess returns, we obtain an unconditional factor model which looks
like the equation used in the so-called Arbitrage Pricing Theory (APT) initiated by Ross
(1976), i.e.,

r̃i,t = α +
N∑

n=1

βnf̃n,t + εt. (30)

Equation (30) can be written in a more compact and standard form as follows:

yt = x′tβ + εt, (31)

where yt = r̃i,t, xt = [1, f̃1,t, ..., f̃N,t]
′ and β = (α, β1, ..., βN)′.

14If one of the factors is not a traded asset return, then its expected risk premium is estimated by the
conditional expectation of the excess return of the factor mimicking portfolio, i.e. a portfolio whose returns
can be used instead of the factor itself. See for e.g. Ferson (2003).

15If the jth factor is the market return, then aj,t = −γt, i.e. the negative of the coefficient of time-varying
relative risk aversion given in Equation (13).
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The OLS estimator of the parameter vector β = (α, β1, . . . , βN)′ is

(α̂, β̂1, . . . , β̂N)′ = (x′x)−1x′y. (32)

In the specific case where the covariance matrix of the regressors is diagonal (that is, if
the different factors are mutually uncorrelated) this formula leads to a simple generalization
of Equation (23) since

β̂OLS
n =

cov(f̃n, r̃i)

var(f̃n)
,∀n = 1, . . . , N. (33)

According to the APT, the one-factor CAPM is not appropriate in a world with multiple
risk factors represented by microeconomic or macroeconomic variables. Among possible risk
factors, one can mention inflation, the spread between short-term and long-term bonds,
industrial production growth or default risks (Brooks, 2014). Many pricing models have
been developed with additional risk factors such as the size and value risk factors (Fama and
French, 1993), the momentum risk factor (Carhart, 1997) or the profitability and investment
risk factors (Fama and French, 2015).

However, multi-factor pricing models have been criticized for poor out-of-sample perfor-
mance and for data snooping (see for instance Andersen et al., 2003, Harvey et al., 2015,
and Linnainmaa and Roberts, 2018).

According to Harvey et al. (2015), more than 300 factors have been presented in the liter-
ature as important and significant in explaining the cross-sectional variation of stock returns.
Many of these factors are however difficult to interpret from an economic perspective.

3 Time-varying betas

There is a large consensus in the literature about the fact that betas are actually time-varying.
Such evidence has been pointed out by Fama and MacBeth (1973), Fabozzi and Francis
(1977), Alexander and Chervany (1980), Sunder (1980), Ohlson and Rosenberg (1982), De-
Jong and Collins (1985), Fisher and Kamin (1985), Brooks et al. (1992), Brooks et al. (1994)
among others. The aim of this section is therefore to review various methods used to esti-
mate time-varying betas (and potentially time-varying alphas) in a conditional model close
to Equation (29):

r̃i,t = αt +
N∑

n=1

βn,tf̃n,t + εt, (34)

or equivalently (31):
yt = x′tβt + εt. (35)

3.1 Rolling betas

The first and simplest way to estimate time-varying betas is to estimate beta over moving
sub-periods using a simple rolling-window OLS regression as proposed by Fama and MacBeth
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(1973) (see Van Nieuwerburgh, 2019 and Zhou, 2013 for applications in the case of the REIT
beta).

Let us assume we have historical data on a period spanning from t0 to tT . This method
consists in selecting a window of h observations (for instance 120 daily returns) and then
estimating Equation (30) by OLS over the first h observations, that is from t0 to t0+h, so
as to obtain (α̂h, β̂1,h, . . . , β̂N,h)′. Then, the window is rolled one step forward by adding

one new observation and dropping the most distant one. So, (α̂h+1, β̂1,h+1, . . . , β̂N,h+1)
′ are

obtained in the same way over the period t0+1 to t0+h+1 and the sequence is reiterated until
the end of the sample period.

This method can be considered as a quick and dirty time-varying regression model. When
compared to the usual OLS regression model, the rolling-window OLS regression model offers
the advantage of taking into account time variations in the alpha and the betas. However,
the coefficients measured with this method only vary very slowly by construction due to
the fact only one period is dropped and another is added between two successive estimates,
which can lead to inaccurate estimates. The results also depend heavily on the size of the
chosen window.16

3.2 Realized betas

An alternative estimation method of time-varying betas is to compute both the realized
variance and realized covariance from intraday17 data so as to estimate the beta using so
called realized measures. The realized variance and covariance being computed from intraday
data, they are much more accurate than standard measures (Hansen et al., 2014). This
approach, based on the works of Andersen et al. (2003) and Barndorff-Nielsen and Shephard
(2004)18, offers a more accurate way of analyzing the dynamic behavior of beta than the
rolling beta methodology (Patton and Verardo, 2012). In the context of a single factor
model, the realized market beta, denoted βR, is defined as

βR
t =

covR(r̃i, r̃M)t
varR(r̃M)t

=
Σ

(s)
k=1r̃(t)i,kr̃(t)M,k

Σ
(s)
k=1r̃(t)M,k

, (36)

where covR(r̃i, r̃M) is the realized covariance between the asset’s excess return and the market
excess return, and varR(r̃M) is the realized variance of the market excess return. r̃(t)i,k is
the excess return on asset i during the kth intraday period on day t and s is the total
number of intraday periods.19 As a consequence, the realized beta is the ratio of an asset’s

16Some refinements can be made, for example, by introducing a weighting scheme giving less weight to
observations from more distant periods (see for instance Nieto et al., 2014).

17Intraday data are used to estimate daily beta, variances or covariances, assuming they are fairly stable
during the day. It is of course possible to use, for instance, daily data to compute beta, variances or
covariances over a month if we assume that these parameters are fairly stable during each month. See for
instance Andersen et al. (2006) and Lewellen and Nagel (2006).

18This methodology assumes an absence of jumps. In the case of jumps, see Todorov and Bollerslev (2010).
19For more details, see Patton and Verardo (2012).
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sample covariance with the market to the sample variance of the market over several intraday
periods.20

This method resembles the rolling beta approach but it relies on non-overlapping windows
(of one day or one month for instance) and requires data sampled at a higher frequency within
each window (e.g. 5-minute returns). The main limit of this methodology is therefore the
need for a sufficient number of intraday data in order to be able to compute the realized
variance and covariance. See Boudt et al. (2017) for an extension to multi-factor betas.

3.3 Time-varying betas with interaction variables

Rolling OLS and ‘realized betas’ do not rely on a parametric model to specificy the dynamics
of the time-varying betas. Shanken (1990) and Schadt (1996) introduce the hypothesis
that the dynamics of the betas depends on a set of exogenous variables. This leads to an
alternative way of modeling conditional betas, via the use of interaction variables (see also
Gagliardini et al., 2016).

Indeed, interaction variables can be used to introduce dynamics in βn,t in the following
way:

βn,t = βn +
K∑
k=1

θn,kZk,t−1, (37)

where each Zk,t−1 variable (k = 1, . . . , K) is an observable state variable, predetermined at
the end of period t − 1, and assumed to drive the dynamics of the beta of the n’th factor,
and where θn,k is its associated coefficient. The above model can be rewritten as

r̃i,t = α + βr̃M,t +
K∑
k=1

θkZk,t−1r̃M,t + εt

and therefore corresponds to a multiple linear regression model with k interaction variables
when the conditional variance is constant or a GARCH model with k interaction variables in
the conditional mean when the conditional variance is assumed to follow a GARCH dynamics.

The advantage of this method is that the model can easily be estimated. However, this
method requires the selection of suitable variables supposed to drive the dynamics of the
betas. In addition, they must be able to generate a certain persistence that can be observed
in the dynamic behavior of the betas.

Many studies have used interaction variables. It seems worth mentioning Schwert and
Seguin (1990), in which betas are assumed to vary with the level of aggregate market volatil-
ity. The authors estimate the conditional market beta in the following way:

βi,t = βi + θi

(
1

σ̂2
M,t

)
, (38)

20It is also possible, as in Lewellen and Nagel (2006), to directly estimate Equation (30) for each intraday
(or intra-monthly, intra-quarterly,...) period.
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where βi and θi are constant parameters and σ̂2
M,t is the time-varying volatility of the aggre-

gate stock market. The model is mainly used to account for time-variation in stock betas or
to study the relationship between firm size and time-varying betas (see for example Reyes,
1999).

3.4 Indirect dynamic conditional betas

As we have seen, the theoretical conditional CAPM expresses the conditional market beta
as follows:

βi,t =
covt(RM,t+1, Ri,t+1)

vart(RM,t+1)
. (39)

This expression opens up the possibility of obtaining time-varying betas from the es-
timation of conditional variances and covariances obtained for instance by a multivariate
GARCH model (see for instance Bali, 2010 for an application and Bauwens et al., 2006 for
a survey on MGARCH models). In this case, the model imposes a minimal structure on the
time-varying process, apart from the modeling of conditional variances and covariances in
an autoregressive form. However, Equation (39) does not apply in the multi-factor model
when the factors are correlated.

Engle (2016) recently extended the multivariate GARCH approach to the case of a multi-
factor model. Following Engle’s (2016) methodology, the conditional betas are inferred from
an estimate of the conditional covariance matrix Σt of (xt, yt)

′.
For ease of exposition we assume in this section that x and y have been centered so that

x does not contain a vector of ones (corresponding to α) and therefore one does not need to
estimate the intercept in (31).

In order to obtain the coefficients of the multivariate regression of yt (asset returns)
on xt (factors), Engle (2016) assumes that (xt, yt)

′ follows an (N + 1)-dimensional normal
distribution (conditional on the information set at time t− 1, denoted Ft−1), i.e.(

xt

yt

)
|Ft−1 ∼ N

((
0m−1

0

)
,Σt ≡

(
Σxx,t Σxy,t

Σyx,t Σyy,t

))
,

where subscripts embody natural partitions.

In order to derive an estimate of the conditional betas, Engle (2016) relies on the fact
that the conditional distribution of yt on xt is

yt|xt ∼ N
(
Σyx,tΣ

−1
xx,txt,Σyy,t −Σyx,tΣ

−1
xx,tΣxy,t

)
. (40)

In more details, estimates of the time-varying coefficients inferred from the regression of
yt on xt can be retrieved from Σt as follows:

β̂
DCB

t ≡ (β̂DCB
1,t , . . . , β̂DCB

N,t )′ = Σ−1xx,tΣxy,t. (41)

When there is only one regressor, estimates of the time-varying coefficients inferred from
the regression of yt on xt can simply be retrieved from Σxy,t/Σxx,t, i.e. the conditional
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covariance between yt and xt divided by the conditional variance of xt. While any MGARCH
model can be used to estimate Σt, Engle (2016) uses a Dynamic Conditional Correlation
(DCC) GARCH model on (xt, yt)

′, which relies on the following decomposition of Σt:

Σt = DtRtDt, (42)

where Dt is a diagonal matrix containing the conditional volatilities (typically modeled with
N + 1 independent univariate GARCH models) while Rt is a conditional correlation matrix
(usually obtained as a transformation of a scalar BEKK specification on the devolatilized
series). Note that the Constant Conditional Correlation (CCC) model proposed by Bollerslev
et al. (1990) is obtained when Rt = R.

Based on the DCC-GARCH model, the DCB model presents several drawbacks, which
we summarize here. First, the stationarity and ergodicity conditions of the DCC are not
well known. Second, the model incorporates complicated constraints associated with corre-
lation matrices. Third, the asymptotic properties of the QMLE (Quasi Maximum Likelihood
Estimator) are unknown. And fourth, the effects of the DCC parameters on βt are nearly
impossible to interpret.

Note that out-of-sample forecasts of the betas can be obtained by adapting Equation
(41) to out-of-sample forecasts of the conditional covariance matrix.

3.5 Direct dynamic conditional betas

In this section, we present two competing models that directly specify the dynamics of the
conditional betas: the first model belongs to the general class of data-driven models while
the second model belongs to the class of observation-driven models.

3.5.1 State-space models

Adrian and Franzoni (2009) suggest a stylized model based on the conditional CAPM, in
which beta changes over time and the investor’s expectation of beta results from a learning
process. This learning process is modeled via a Kalman process in which beta is treated
as a latent variable. Adrian and Franzoni (2009) thus provide a theoretical foundation for
the estimation of unobserved time-varying betas by state-space modeling (see Choudhry and
Wu, 2008, Cisse et al., 2019, Faff et al., 2000, Huang, 2009, Mergner, 2008, and Nieto et al.,
2014 among others).

A useful state space representation of the multi-factor model is given by the following
system of equations:

yt = x′tβt + εt (43)

βt − β = Φ(βt−1 − β) + ut, (44)

where yt = r̃i,t, xt = [1, f̃1,t, ..., f̃N,t]
′, βt = (αt, β1,t, ..., βN,t)

′, Φ is a ((N + 1)× (N + 1))
transition matrix which can be assumed to be diagonal: Φ = diag(Φ0,Φ1, ...,ΦN).
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The N + 2 residuals are assumed to be conditionally i.i.d and mutually independent, i.e.(
ut

εt

)
|Yt−1,Xt

i.i.d∼ N

((
0

0

)
,

(
Q 0
0 σ2

))
, (45)

where Q = diag(σ2
u0, σ

2
u1, ..., σ

2
uN), and we use the notations Yt = {yt, yt−1, ...y1} and Xt =

{x′t,x′t−1, ...x′1} to denote observations available at time t.21

Equation (44) encompasses several specifications (see Chapter 2 of Moryson, 1998, for
more details).

If Φ = I, each conditional beta follows a random walk process, i.e.

βn,t = βn,t−1 + un,t, n = 1, . . . , N. (46)

In this case, the h-step-ahead out-of-sample forecast of the n-th conditional beta at the end
of the estimation period is given by βn,T+h = βn,T , ∀h > 0.

If Φ = 0, we obtain the random coefficient model

βn,t = βn + un,t, n = 1, . . . , N, (47)

where the deviation of βn,t from its unconditional mean βn is caused solely by the noise un,t,
and the h-step-ahead out-of-sample forecasts is βn,T+h = βn, ∀h > 0.

Finally, Equation (44) corresponds to the mean reverting model22

βn,t = βn + Φn(βn,t−1 − βn) + un,t. (48)

The stochastic process βn,t reverts to its unconditional mean βn after a shock and the
parameter Φn controls the speed of reversion to the mean. The h-step-ahead out-of-sample
forecast is given by βn,T+h − βn = Φh

n(βn,T − βn).
Let us write Equation (44) in a more compact form as

βt = µ+ Φβt−1 + ut, (49)

where µ = (α(1− Φ0), β1(1− Φ1), ..., βN(1− ΦN))′.
Estimation of the model’s parameters can be achieved by the Kalman filter, an iterative

algorithm producing at each time t an estimator of βt denoted β̂t|t−1 based on the information
up to time t− 1.

Given an estimate β̂t|t−1, the measurement Equation (43) can be written as

yt = x′tβ̂t|t−1 + x′t(βt − β̂t|t−1) + εt. (50)

The one period-ahead conditional forecast is thus E[yt|Yt−1,Xt] = yt|t−1 = x′tβ̂t|t−1 and the
prediction error

ηt|t−1 = yt − yt|t−1
= yt − x′tβ̂t|t−1. (51)

21Several extensions can be accounted for, such as time varying variances/covariances of the error terms.
22Since we assume Φ = diag(Φ0,Φ1, ...,ΦN ), if all (Φ0,Φ1, ...,ΦN ) are inside of the unit circle, then the

vector β corresponds to the average value of βt+1.
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From Equation (50), the MSE of the prediction error can be easily computed as

ft|t−1 = E[(ηt|t−1)
2|Yt−1,Xt] = x′tPt|t−1xt + σ2, (52)

where Pt|t−1 = E[(βt−β̂t|t−1)(βt−β̂t|t−1)
′|Yt−1,Xt] is the covariance matrix of βt conditional

on the information up to t−1. We can see from Equation (52) that the MSE of the prediction

error consists of two parts: the uncertainty associated with β̂t|t−1 and the variance of εt.
Under the gaussianity assumption, the sample log-likelihood is (Hamilton, 1994, Durbin

and Koopman, 2001):

T∑
t=1

log f(yt|Yt−1,Xt) = −
(
T

2

)
log(2π)−

(
1

2

) T∑
t=1

log(ft|t−1) (53)

−
T∑
t=1

(
ηt|t−1

)2
ft|t−1

,

where ηt|t−1 and ft|t−1 are given respectively in Equations (51) and (52).

With initial condition β̂0|0 and P0|0, the conditional covariance matrix Pt|t−1 and the

conditional vector β̂t+1|t are recursively computed according to the following prediction equa-
tions:

• One-step ahead forecast

β̂t|t−1 = µ+ Φβ̂t−1|t−1 (54)

Pt|t−1 = ΦPt−1|t−1Φ
′ + Q (55)

as well as Equations (51) and (52).

• Kalman gain
Kt = Pt|t−1x

′
tf
−1
t|t−1. (56)

• Measurement update

β̂t|t = β̂t|t−1 + Ktηt|t−1 (57)

Pt|t = (I−Ktx
′
t)Pt|t−1. (58)

The Kalman gain Kt is used to update β̂t|t from β̂t|t−1. It determines the relative weight-
ing of new information (given by the prediction error ηt|t−1) versus the current state estimate

β̂t|t−1.
For given parameters of the model, the recursive Equations (54)-(58) provide the predic-

tion error ηt|t−1 and its variance ft|t−1. The unknown parameters are estimated through the
maximization of the log-likelihood (53) with respect to these parameters, using ηt|t−1 and
ft|t−1 as inputs.
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Finally, the smoothed estimates are obtained by iterating backward for t = T − 1, T −
2, ..., 1 the following equations:

β̂t|T = β̂t|t + Pt|tΦ
′P−1t+1|t

(
β̂t+1|T − µ−Φβ̂t|t

)
(59)

Pt|T = Pt|t + Pt|tΦ
′P−1t+1|t

(
Pt+1|T −Pt+1|t

) (
P−1t+1|t

)′
Φ
(
Pt|t
)′
, (60)

where β̂T |T and PT |T are the initial value for the smoothing, obtained from the last iteration
of the Kalman filter.

Adrian and Franzoni (2009) use a one-factor version of Equation (44), i.e. they assume
that the conditional beta follows a mean-reverting process, with and without conditioning
variables such as the term spread. In addition, they also introduce a time-varying unobserv-
able long-run beta βt and they consequently add an updating equation for this coefficient.
According to Adrian and Franzoni (2009), the measurement update with the Kalman gain
provides a realistic representation of the investor’s learning process regarding the unknown
beta.

From an empirical perspective, Choudhry and Wu (2008), Faff et al. (2000), Mergner
(2008), and Nieto et al. (2014) compare different methodologies for estimating time-varying
betas. In particular, they compare different multivariate GARCH specifications and Kalman
models (Random Walk, Random Coefficients, Mean-Reverting). Overall, the Kalman Ran-
dom Walk model is considered as the best description of time-varying sectoral betas.

3.6 Autoregressive conditional betas

An alternative to the state space model presented above that also allows a direct specification
of dynamic conditional betas has recently been proposed by Darolles et al. (2018). Their
model, called CHAR, is a multivariate GARCH model based on the Cholesky decomposition
of the m×m (with m = N + 1) conditional covariance matrix Σt of (xt, yt)

′.
As Pourahmadi (1999), let us consider the Cholesky decomposition of Σt, i.e.

Σt = LtGtL
′
t,

where Gt = diag(g11,t, . . . , gmm,t) and Lt is a lower unitriangular matrix (i.e. triangular with
1’s on the diagonal and 0’s above the diagonal) with element `ij,t at the row i and column j
for i > j.

Let us now illustrate this decomposition for m = 3.

L =

 1 0 0
l21,t 1 0
l31,t l32,t 1

 G =

g11,t 0 0
0 g22,t 0
0 0 g33,t


and

Σ =

 g11,t l21,tg11,t l31,tg11,t
l21,tg11,t l221,tg11,t + g22,t l21,tl31,tg11,t + l32,tg22,t
l31,tg11,t l21,th31,tg11,t + l32,tg22,t l231,tg11,t + l232,tg22,t + g33,t

 .
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Darolles et al. (2018) show that if wt ≡ (xt, yt)
′ has mean 0,

wi,t =
i−1∑
j=1

`ij,tεj,t + εi,t =
i−1∑
j=1

`ij,t

(
wj,t −

j−1∑
k=1

`jk,tvk,t

)
+ εi,t

=
i−1∑
j=1

βij,twj,t + εi,t.

Interestingly, for i = m, the m’th equation of the CHAR model is

yt =
m−1∑
j=1

βij,txj,t + εi,t, (61)

which corresponds to Equation (35) when αt = 0, N = m− 1 and εt = εi,t.
Darolles et al. (2018) show that gii,t is the conditional variance of wi,t and rely on a

GARCH model to specify its dynamics. They also propose several specifications for the
dynamics of the conditional betas and study the statistical properties of the MLE and
Gaussian QML of this model. In their application, they retain the following specification of
the conditional betas:

βij,t = βij + aijεi,t−1εj,t−1 + bijβij,t−1. (62)

The main drawback of this model is therefore that it requires estimating the system sequen-
tially because βij,t not only depends on εi,t−1 but also on εj,t−1, the error term of the j’s (with
j < i) equation in the Cholesky decomposition. Darolles et al. (2018) also derive stationarity
conditions and prove the consistency and the asymptotic normality of the QML estimator
of this model.

Building upon the CHAR model, Blasques et al. (2020) propose another model, called the
Autoregressive Conditional Beta (ACB) model, which does not require the estimation of the
whole system and that outperforms the CHAR specification in the modeling of conditional
betas.

Using the same notation as in Equation (35), the ACB model is specified as

yt = β0,tx0,t +
N∑

n=1

βn,txn,t + εt (63)

εt = σtzt, zt
i.i.d.∼ N(0, 1) (64)

βi,t = βi +
K∑
k=1

θi,kZk,t−1 + aixi,t−1εt−1 + biβi,t−1,∀i = 0, . . . , N, (65)

where x0,t = 1 ∀t and σ2
t is a GARCH(1,1) model as in (25). Note that β0,tx0,t ≡ αt is a

time-varying alpha when a0 6= 0 and b0 6= 0 but can be constrained to be a constant (like in
the empirical application) by setting a0 = b0 = 0.
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This model is very general because it nests the static Model (31) when ∀i = 0, . . . , N,
K = 0 and ai = bi = 0 but also Model (37) with interaction variables when θ0,k = 0 and
∀k = 0, . . . , K, ai = bi = 0.

Blasques et al. (2020) study the statistical properties of this model (stationarity and
invertibility) but also those of the MLE and Gaussian Quasi-Maximum Likelihood estimators
and prove convergence and asymptotic normality under mild conditions.

4 Empirical application on REITs

Real Estate Investment Trusts23 (REITs), which are publicly-traded real estate companies
that own and manage commercial or residential real estate, are attractive alternatives to the
mainstream investment choice (e.g. stocks and bonds) since they allow investors to easily
access real estate investments without directly owning or managing the underlying assets.24

Moreover, the literature on real estate has shown that the inclusion of REITs within one’s
portofolio improves the risk-return profile of the portfolio. Compared to other asset classes
such as bonds and stocks, they have the characteristics of offering more stable returns and
a lower volatility. For the purpose of portfolio diversification, it is important to know how
the level of exposure of REITs to both the bond market risk and to the stock market risk
varies over time. The aim of this section is thus to perform a comparative analysis of the
three most advanced modeling techniques (state space, DCB and ACB) used in estimating
the sensitivity of REIT indices to changes in both the bond market and the stock market.
Van Nieuwerburgh (2019) argues that a model with a bond market and stock market factor
is both the most basic and most natural model of risk for REITs as the bond market beta
measures how sensitive REITs are to changes in interest rates and the stock market beta
measures how sensitive REITs are to changes in economic activity.25 A similar model is
used by Allen et al. (2000). Moreover, we note that the addition of three Fama-French
risk factors (size, value and momentum) to the original two-factor model in the study of
Van Nieuwerburgh (2019) leaves the bond and stock market betas almost unchanged. As a
consequence, we follow Van Nieuwerburgh (2019) and choose to perform our analysis on the
following parsimonious two-factor model:

r̃REIT,t = αt + βB,tr̃B,t + βM,tr̃M,t + εt, (66)

23REITs were initially established in 1960 when the U.S. Congress enacted the legislation authorizing their
existence. Since then, REITs were authorized in many countries (even though REIT regimes vary country-
by-country), including most European countries (e.g. the Netherlands in 1969, Belgium in 1995, France in
2003, Germany, Italy, the United Kingdom in 2007 or Portugal in 2019).

24Their revenues are mainly generated from the rents they receive and they do not have to pay any cor-
porate tax in exchange for paying most of their taxable income to shareholders (U.S. REITs must distribute
90% of their taxable income to shareholders through dividend payments for example).

25We would probably formulate this a bit differently than Van Nieuwerburgh, arguing that market beta
measures how sensitive REITs are to changes in economic activity in the broad sense, the variability of stock
market returns being more related to the expectation of future profits than the real economic activity per
se.
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where r̃REIT is the excess return on the REIT market, measured by the daily excess return
on the FTSE EPRA Nareit index, r̃B is the excess return on the bond market, measured
by the daily excess return on the sovereign bond index and r̃M is the excess return on the
stock market, measured by the daily excess return on the stock market index. Equation (66)
corresponds to the conditional risk factor model that we use to estimate conditional betas
on day t from a regression of the daily excess REIT index returns on the excess stock market
and bond market returns. In the special case where βt = (βB,t, βM,t)

′ = β, the betas are
restricted to be constant. Note also that for some models the alpha is allowed to be time-
varying as well. However, empirical results (not reported here to save space) suggest that
αt = α (∀t) once allowing the conditional betas of this two-factor model to be time-varying.

Two strands of literature on REIT conditional betas are particularly relevant to our
study. The first one considers the exposure of REITs to both interest-rate risk and stock-
market risk. Flannery and James (1984) put the emphasis on the fact that firms holding
financial assets should be more sensitive to interest-rate risk. Allen et al. (2000) put forward
four reasons why equity and mortgage REITs may be affected by changes in interest rates.
First, REITs rely heavily on debt so that an increase in interest rates may dampen demand
and have a negative impact on valuations (and vice versa). Second, an increase in interest
rates may also translate into a higher cost of debt financing. Third, such an increase may
result in a higher required rate of return by investors. And fourth, it may raise the cost of
present development and refurbishment projects.

A second strand of literature considers potential regime shifts in market betas. Willard
and Youguo (1991) find a decline in equity REIT betas over the period 1974-1983. Liang
et al. (1995) in a similar study find that the market beta of equity REITs is rather stable
over time while the market beta of mortgage REITS declined substantially over the period
1973-1989. However, Chiang et al. (2005) find that when using the Fama-French three-factor
model, the declining trend in equity REIT betas evaporates. Finally, Glascock (1991) tests
for changes in the market beta of a REIT portfolio during bull and bear markets and finds
that the beta behaves procyclically.

Despite the numerous empirical applications focusing on REITs, only a few papers exam-
ine how to best model the market beta of REITs. We can mention the papers by Zhou (2013)
and Altınsoy et al. (2010). Zhou (2013) compares five modeling techniques in the estimation
of the conditional beta of REITs: rolling regression, dynamic conditional correlation (DCC)
GARCH model, Schwert and Seguin model, state space model and Markov-switching model.
In the same way, the study of Altınsoy et al. (2010) is based on the estimation of the condi-
tional beta of Turkish REITs with a comparison of modeling techniques. Compared to the
existing literature, the contribution of our study is fourfold : first we attempt to analyze how
to model the conditional beta of REITs focusing on the two largest REIT markets (i.e. the
U.S. and European REIT markets), which allows us to compare both markets. Second, we
extend the spectrum of modeling techniques by focusing on the most advanced conditional
beta modeling techniques, that is to say the state space model, DCB and ACB modeling
techniques. Third, we investigate the time variability of betas in a two-factor model and we
introduce within this model exogenous variables that may affect the evolution of the bond
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market beta and the stock market beta. Finally, in addition to an in-sample beta estimation,
we extend our analysis to an out-of-sample beta forecasting exercise.

4.1 Data and sample

We focus on both the U.S. and developed Europe26 REIT markets, proxied by the daily
excess log-returns on the FTSE EPRA Nareit United States USD Total Return Index and
the FTSE EPRA Nareit Developed Europe EUR Total Return Index. The FTSE EPRA
Nareit data are from Thomson Reuters Eikon.

We explore the sensitivity of the two REIT indices to (1) the bond market factor as
proxied by the daily excess log-returns on the S&P U.S. Treasury Bond Index and the S&P
Eurozone Developed Sovereign Bond Index respectively, and to (2) the stock market factor
proxied by the daily excess log-returns on the S&P500 index and the EUROSTOXX600
index respectively. The bond market data are obtained from Standard and Poor’s and the
stock market data are from Thomson Reuters Eikon.

The risk-free rate is the one-month T-bill rate for the U.S. and the one-month Euribor
rate for developed Europe computed on a daily basis. The data are from the Federal Reserve
Economic Data (FRED) and the European Money Markets Institute (EMMI) respectively.

Assuming that beta can be influenced by risk aversion, we use three risk aversion indi-
cators commonly used in the literature (Bank, 2007) as exogenous variables that may affect
the evolution of the bond market beta and the stock market beta. In particular, we use
implied volatility as an indicator of the volatility that is expected by the market, the Ted
Spread as an indicator of credit risk in the interbank money market, and the High Yield
Option-Adjusted Spread as an indicator of credit risk.

The volatility indices, i.e. the VIX for the U.S and the VSTOXX for developed Europe,
respectively measure the 30-day expected volatility of the U.S. stock market based on the
S&P500 option prices and the 30-day expected volatility of the European stock market based
on the EUROSTOXX50 option prices. We hereafter both call them VIX for simplicity. The
Ted Spread is the difference between the three-month Treasury bill and the three-month USD
LIBOR rate.27 The US High Yield Index Option-Adjusted Spread is the difference between
a computed option-adjusted spread (OAS) index of all bonds in the Bank of BofAML US
High Yield Master II Index and a spot Treasury curve. As for the EUR High Yield Index
Option-Adjusted Spread of BofAML, it is the European equivalent of the U.S. High Yield
Index Option-Adjusted Spread.

The full sample runs from October 02, 2009 to October 01, 2019, which amounts to 2,554
daily returns.

26Based on the FTSE EPRA Nareit Developed Europe EUR Total Return Index, developed Europe
includes the following countries: Austria, Belgium, Finland, France, Germany, Ireland, Italy, the Netherlands,
Norway, Spain, Sweden, Switzerland and the United Kingdom.

27While the Ted Spread originally measures interbank risk in the U.S., we believe that this indicator may
also be relevant for Europe as well, the U.S. being the leading engine of credit worldwide.
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4.2 Empirical results

The aim of our empirical study is to compare the performance of the competing models from
two perspectives: in-sample beta estimates on the one hand and out-of-sample beta forecasts
on the other hand. The in-sample analysis is meant to assess how well the different models
fit the data while the out-of-sample analysis is useful in assessing what modeling technique
provides the best beta forecasts in a tracking exercise. A better beta forecast can then be
used as an input within many financial applications.

We use the first 2,304 observations of our sample as the in-sample period and the remain-
ing 250 observations as the out-of-sample period. Having performed a sensitivity analysis
on the same sample by increasing the number of out-of-sample period observations (to 500
and 750 observations respectively) and having found that the results were qualitatively the
same, we do not report them to save space.

4.2.1 In-sample estimates

Seven competing models have been estimated using the Ox programming language (Doornik,
2012) and the G@RCH 8.0 software (Laurent, 2018) to obtain the conditional bond market
betas (βB,t) and the conditional stock market betas (βM,t) for both the U.S and developed
Europe. We estimate the following two-factor model:

r̃REIT,t = αt + βB,tr̃B,t + βM,tr̃M,t + εt. (67)

The seven competing models are the following:

1. OLS model:

αt = α, βB,t = βB, βM,t = βM ∀t,

εt
i.i.d.∼ N(0, σ2).

2. Univariate GARCH model:

αt = α, βB,t = βB, βM,t = βM ∀t,

εt = σtzt, zt
i.i.d.∼ N(0, 1),

σ2
t = λ0 + λ1σ

2
t−1 + λ2ε

2
t−1.

3. Univariate GARCH model with interaction variables (GARCH-Z):

αt = α ∀t,
βB,t = cB+θB,TEDTEDt−1 + θB,HYHYt−1,

βM,t = cM +θM,V IXV IXt−1,

εt = σtzt, zt
i.i.d.∼ N(0, 1),

σ2
t = λ0 + λ1σ

2
t−1 + λ2ε

2
t−1,
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where TEDt, HYt, and V IXt are respectively the TED spread, the High Yield Index
Option-Adjusted Spread, and the VIX index, θB,TED and θB,HY are the coefficients of
the two interaction variables entering into the conditional betas of the bond market,
and θM,V IX is the coefficient of the interaction variable entering into the conditional
betas of the stock market.

4. State Space Model (SSM):

αt = α ∀t,
βB,t = βB,t−1 + uB,t,

βM,t = βM,t−1 + uM,t,

 uB,t

uM,t

εt

 |Yt−1,Xt
i.i.d∼ N

 0
0
0

 ,

 σ2
B 0 0
0 σ2

M 0
0 0 σ2

ε

 .

5. Dynamic Conditional Beta Model (DCB):(
xt

yt

)
|Ft−1 ∼ N

((
0

0

)
,Σt ≡

(
Σxx,t Σxy,t

Σyx,t Σyy,t

))
,

αt = α∀t,

β̂
DCB

t ≡ (β̂B,t, β̂M,t)
′ = Σ−1xx,tΣxy,t.

where xt = (r̃B,t, r̃M,t)
′, yt = r̃REIT,t and Σt is specified as a DCC-GARCH(1,1) model.

6. Autoregressive Conditional Beta (ACB):

αt = α ∀t,
βB,t = cB + aBxi,t−1εt−1 + bBβB,t−1,

βM,t = cM + aMxi,t−1εt−1 + bMβM,t−1,

εt = σtzt, zt
i.i.d.∼ N(0, 1).

7. Autoregressive Conditional Beta with interaction variables (ACB-Z):

αt = α ∀t, (68)

βB,t = cB + aBxi,t−1εt−1 + bBβB,t−1,

βM,t = cM + aMxi,t−1εt−1 + bMβM,t−1+θM,V IXV IXt−1,

εt = σtzt, zt
i.i.d.∼ N(0, 1),

where θB,V IX is the coefficient of the interaction variable entering into the conditional
betas of the stock market.28

28The other two coefficients entering into the conditional betas of the bond market (i.e. θB,TED and
θB,HY ) are found to be insignificant so that the corresponding variables are removed from the model.
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To ease the presentation of the results throughout the rest of the paper, we use GARCH,
GARCH-Z, DCB, SSM, ACB and ACB-Z to respectively denote the GARCH model, the
GARCH model with interaction variables, the dynamic conditional beta model, the state
space model, the autoregressive conditional beta model and the autoregressive conditional
beta model with interaction variables.

The GARCH-Z model corresponds to a GARCH model with interaction variables in the
conditional mean or equivalently an ACB model with no dynamics (i.e. ai = bi = 0, ∀i) but
with explanatory variables. SSM is a state space model without dynamics in the intercept
but in which the two slope coefficients follow a random walk. The ACB and ACB-Z models
are two ACB models, but exogenous explanatory variables are only included in the latter
model. Note also that a GARCH specification is included in the residuals of all the models
except for the OLS and SSM.

Estimation results of the different models are reported in Tables 1 and 2, respectively for
the U.S. and developed Europe.

We do report the estimated parameters for the sake of completeness but it is hard to
draw any conclusion from them. To compare the models in-sample, we rely on both the
log-likelihood and the Bayesian Information Criterion (BIC). Table 3 reports the number of
parameters, the log-likelihood as well as the BIC of all the models at the exception of the
DCB.29 Results suggest that the GARCH-Z, ACB and ACB-Z models always outperform
the other models for both the U.S. and developed Europe. Interestingly, when comparing
the GARCH-Z model to the GARCH model based on both the BIC and a likelihood ratio
test, we find that results are clearly in favor of the GARCH-Z model, suggesting that the risk
factors used to capture the dynamics in the conditional betas are relevant. Results reported
in Tables 1 and 2 indeed suggest that these three variables help predict the dynamics of the
two conditional betas in the GARCH-Z model. However, although the ACB model does not
rely on these exogenous factors, it further improves the estimation of the dynamics of the
two conditional betas.

According to the BIC, the best model is the ACB-Z model, i.e. an ACB model with
the additional VIX explanatory variable in the conditional beta of the stock market. Note
however that the SSM model imposes the variance of the error term to be homoscedastic,
which certainly explains why it performs so badly according to the BIC. Extending the SSM
model by accounting for GARCH effects in the residuals is therefore desirable but beyond
the scope of this paper.

The estimated conditional betas βB,t and βM,t are plotted in Figures 1 and 2, respectively
for the U.S and developed Europe. Each graph contains the estimated betas for the seven
competing models of our study. Both graphs reveal large fluctuations over time regarding
the exposure of REITs to the two risk factors of our model.

The reading of these graphs leads to various observations. First, we observe that both
the bond market beta and the stock market beta are not constant over time but time vary-

29Recall that the DCB model requires estimating an MGARCH model (i.e. a DCC-GARCH model in our
case) so that the obtained log-likelihood is for the joint distribution of the three series (r̃REIT,t, r̃B,t, r̃M,t)

′

and not for r̃REIT,t given r̃B,t and r̃M,t as for the other six models.
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Table 3: Comparison of the different models based on log-likelihood

United States Developed Europe
#para Log-lik BIC Log-lik BIC

OLS 4 -2,726.81 2.3805 -2,046.09 1.7896
GARCH 6 -2,588.30 2.2670 -1,972.63 1.7325
GARCH-Z 9 -2,502.28 2.2033 -1,930.44 1.7067
SSM 4 -2,531.73 2.2010 -1,996.49 1.7364
ACB 10 -2,444.96 2.1560 -1,939.16 1.7169
ACB-Z 11 -2,442.61 2.1582 -1,925.20 1.7089

The table reports the number of parameters (#para), log-likelihood
(Log-lik) and Bayesian Information Criterion (BIC) of all the models
(at the exception of the DCB) for both the United States and developed
Europe.

ing (contrary to the assumption made when using the OLS approach), which confirms the
appropriateness of conditional CAPM modeling. Second, the stock market beta for the U.S.
and to a lesser extent for developed Europe is on a declining track over the considered period,
implying that the sensitivity of the REIT sector to the overall equity market is decreasing
and can be interpreted as a sign of a maturing REIT market, which is consistent with the
out-of-sample results of Zhou (2013), even though his study ends in 2011. The picture is
however different regarding the bond market beta of both the U.S. and developed Europe
since the bond market beta of both areas is rather on a rising track over the same period.
This difference justifies both using a two-factor model and comparing the U.S. to Europe.
Third, while we observe that all the dynamic methods (DCB, ACB, SSM) present similar
dynamics, we also note that the conditional betas of the DCB model are far more erratic
than those of the SSM and ACB models. Indeed, the conditional betas obtained with the
DCB model are very choppy over the estimation period while those obtained with the SSM
and ACB models are much smoother on average. Fourth, we observe periods where the betas
obtained with the different models are very close to one another and periods where the betas
are very far from one another so that one can expect differences between the different models
in terms of performance. Finally, the conditional bond and stock market betas filtered with
the SSM model are smoother than those obtained with the other models of our comparative
study. However, this effect can be explained by the fact a random walk is imposed in this
model. Finally, we find that the correlation between the betas of the SSM model and the
betas of the ACB model is very high (0.77 for the developed Europe bond market beta, 0.71
for the developed Europe stock market beta, 0.89 for the U.S. bond market beta, 0.94 for
the U.S. stock market beta) and we note that the correlation remains high when we add
explanatory variables to the betas of the ACB model.
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4.2.2 Out-of-sample estimates

The aim of this section is to illustrate the usefulness of the competing models in a portfolio
and risk management exercice. Since realized betas are not observed, it is impossible to
judge the quality of the models by looking at the forecasting errors of the conditional betas.

Instead, following Engle (2016) and Darolles et al. (2018), we perform a tracking exercise
that consists in taking a position at time t in the two considered factors (bond and market)
whose weights are the one-step ahead forecasts of the corresponding conditional betas.

For each model, the conditional betas forecasts are therefore used to construct a hedging
portfolio. The returns on this portfolio are obtained using the conditional betas forecasts,
i.e.

ZREIT,t+1|t = βB,t+1|tr̃B,t+1 + βM,t+1|tr̃M,t+1, (69)

where r̃B,t+1 and r̃M,t+1 are the realized excess log-returns of the two factors at time t + 1
while βB,t+1|t and βM,t+1|t are the one-step-ahead forecasts of the conditional betas obtained
at the end of day t.

This hedging portfolio can be interpreted as a portfolio invested in the risk factors and
which optimally tracks the corresponding REIT returns. It is a hedging portfolio in the sense
that it can be sold short to hedge the main risks of a given portfolio. In this asset pricing
context, expected returns on any asset are linear in the betas and only depend upon the risk
premiums embedded in the factors. In other words, there is no alpha or intercept in (69).

For both the U.S. and developed Europe, we compute the ex-post tracking errors as
follows:

TEt+1|t = r̃REIT,t+1 − ZREIT,t+1|t (70)

and we look for the model that has the smallest sample mean square error (MSE) and
mean absolute deviation (MAD) over the 250 values of the tracking errors using the Model
Confidence Set approach of Hansen et al. (2011). Models are reevaluated every 25 steps so
that estimated parameters are kept constant to produce 25 one-step-ahead forecasts of the
conditional betas before being updated.

The forecasted one-steap-ahead conditional betas βB,t+1|t and βM,t+1|t are plotted in Fig-
ures 3 and 4, respectively for the U.S and developed Europe. Each graph contains the
forecasted betas for the seven competing models. Both graphs again reveal large fluctua-
tions over time regarding the exposure of REITs to the two risk factors of our model and we
observe large discrepancies between the competing methods.

Table 4 reports the MSE and the MAD as well as the results of the MCS test with an
MSE loss function, a significance level of 5%, and 10,000 bootstrap samples (with a block
length of 5 observations). Models highlighted with the symbol 3 are contained in the model
confidence set (or set of superior models) when relying either on the MSE or MAD loss
function (i.e. results are identical for both loss functions). The ACB, ACB-Z and SSM
models clearly outperform the other models. The ACB model has the lowest MSE for both
series although its MSE is not statistically different from those of the ACB-Z and SSM at the
5% nominal size according to the MCS test. Interestingly, the models with constant betas
clearly underperform the models with time-varying betas. Furthermore, the conditional
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Table 4: Comparison of out-of-sample results

Panel A: United States
MSE MAD MCS

OLS 0.8463 0.6670
GARCH 0.7381 0.6240
GARCH-Z 0.7273 0.6175
DCB 0.6808 0.6040
SSM 0.6336 0.5694 3

ACB 0.6071 0.5769 3

ACB-Z 0.6018 0.5723 3

Panel B: Developed Europe
MSE MAD MCS

OLS 0.4758 0.5391
GARCH 0.4663 0.5344
GARCH-Z 0.4426 0.5219
DCB 0.4504 0.5311
SSM 0.4279 0.5201 3

ACB 0.4063 0.5042 3

ACB-Z 0.4074 0.5058 3

The table reports three evaluation criteria: MSE
(mean square error), MAD (mean absolute deviation)
and MCS (model confidence set). Models highlighted
with the symbol 3 are contained in the model confi-
dence set (or set of superior models).

betas of the DCB model are found to be much more volatile than those of the ACB models
and the SSM (which would imply higher transaction costs). Finally, it appears that the DCB
model significantly underperforms in this tracking exercise.

5 Conclusion

In this chapter, we review the different time series models used to estimate static and time-
varying betas and then compare the performance of the standard static beta models (i.e. OLS
and GARCH models) to the most advanced conditional beta modeling techniques that are
the state space model, the dynamic conditional beta model and the autoregressive conditional
beta model (with or without additional exogenous variables). The analysis is performed on
the two largest REIT markets in the world, that is to say the U.S. and developed Europe
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REIT markets, over the period 2009-2019. In particular, we investigate the time variability
of betas in a two-factor model, where βB,t and βM,t are respective measures of the sensitivity
of the REIT index to changes in the bond market and the stock market. Assuming that beta
may depend on risk aversion, we use three risk aversion indicators as exogenous variables
that may affect the evolution of the bond market beta and the stock market beta.

Based on the employed evaluation criteria, we evaluate the performance of the seven com-
peting models both in terms of in-sample estimates and through an out-of-sample tracking
exercise. Results reveal several meaningful findings. First, dynamic models clearly outper-
form static models both in- and out-of-sample, meaning that both the bond market beta and
the stock market beta are not constant over time but time varying, which gives convincing
arguments for modeling conditional, instead of static, betas. Second, the autoregressive con-
ditional beta model with additional exogenous variables outperforms the other techniques
for both the U.S. and developed Europe, followed by the autoregressive conditional beta
model without additional variables and the state space model. The dynamic conditional
beta model delivers an unsatisfactory out-of-sample predictive performance. Finally, the
inclusion of risk aversion indicators as exogenous variables into the ACB model (but also
into the GARCH model) helps improve the prediction of betas.

These results can be used in many financial situations, like for example for estimating
the cost of capital with the aim of capital budgeting involving REITs, for evaluating the
performance of REIT portfolios or for decisions concerning asset allocation and portfolio
diversification.
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Figure 1: In-sample conditional betas for the U.S.

Figure 2: In-sample conditional betas for developed Europe
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Figure 3: Out-of-sample conditional betas for the U.S.

Figure 4: Out-of-sample conditional betas for developed Europe
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