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Section 1

Introduction

Volatility measures the dispersion of asset price returns. Recognizing the importance of foreign

exchange volatility for risk management and policy evaluation, academics, policymakers, regulators,

and market practitioners have long studied and estimated models of foreign exchange volatility and

jumps.

Financial economists have long sought to understand and characterize foreign exchange volatil-

ity, because the volatility process tells us about how news affects asset prices, what information is

important, and how markets process that information.

Policymakers are interested in measuring asset price volatility to learn about market expecta-

tions and uncertainty about policy. For example, one might think that a clear understanding of

policy objectives and tools would tend to reduce market volatility, other things equal.

More practically, understanding and estimating asset price volatility is important for asset

pricing, portfolio allocation, and risk management. Traders and regulators must consider not only

to the expected return from their trading activity but also the trading strategy’s exposure to risk

during periods of high volatility. Traders’ risk-adjusted performance depends upon the accuracy

of their volatility predictions. Therefore, both traders and regulators use volatility predictions as

inputs to models of risk management, such as Value-at-Risk (VaR).

The goal for volatility modelers has been to simultaneously account for the most prominent

features of foreign exchange volatility: (i) it tends to be autocorrelated; (ii) it is periodic, displaying

intraday and intraweek patterns; and (iii) it includes discontinuities (jumps) in prices.

To account for these characteristics, researchers started modeling weekly and daily volatility

with parametric ARCH/GARCH models in the 1980s. Practitioners often use the RiskMetrics

statistical model, which is a member of the large ARCH/GARCH family. These models effec-

tively described the autocorrelation in daily and weekly volatility. At intraday horizons, however,

institutional features—that is, market openings/closings and news announcements—create strong
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intraday patterns, including discontinuities in prices. Much research on intraday data sorted out

the factors behind these periodic patterns and discontinuities. The use of intraday data enabled

the next big advance in volatility modeling: “realized volatility,” which is the use of very high

frequency returns to calculate volatility at every instant. A few years later, researchers began to

develop increasingly sophisticated models that estimate jumps and that combine autoregressive

volatility and jumps.

In short, academic researchers have improved volatility estimation remarkably quickly in the

last 30 years, and policymakers, traders and regulators have benefitted from these advances. This

chapter reviews those advances and provides some suggestions for further research.

The next section begins with parametric methods before Section 3 describes non-parametric

models. Section 4 describes how researchers have modeled intraday periodicity. Section 5 in-

troduces the subject of testing for jumps or discontinuities in foreign exchange data. Section 6

evaluates the important literature on how news, including central bank intervention, affects volatil-

ity and jumps in foreign exchange rates. Section 7 concludes.

Exchange rate data

We start our review of the foreign exchange volatility literature by illustrating some stylized facts

of currency markets with intradaily data for the EUR/USD and USD/JPY exchange rates over

a period from 3 January 1995 to 30 December 2009.1 Olsen and Associates provides the last

mid-quotes (average of the logarithms of bid and ask quotes) of 5-minute intervals throughout the

global 24-hour trading day. Following Andersen and Bollerslev (1998a), one trading day extends

from 21:00 GMT on day t − 1 to 21:00 GMT on day t. Let us denote Pt,i the i-th price of day

t. The i-th return (in per cent) of day t, denoted (yt,i), is computed as 100(pt,i − pt,i−1) where

pt,i = logPt,i and by convention pt,0 = pt−1,M .

We omit trading days that display either too many missing values or low trading activity because

they will provide poor estimates of volatility. Similarly, we deleted week-ends plus certain fixed and

irregular holidays, trading days for which there are more than 57 missing values at the 5-minute

frequency (corresponding to more than 20 per cent of the data), and trading days with too many

empty intervals and consecutive prices.2 These criteria leave 3716 and 3720 days, respectively, for

the EUR/USD and the USD/JPY exchange rates. We obtain return series of lower frequencies by

summing 5-minute returns at 30-minute, 1-hour, daily, weekly and monthly horizons.
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Stylized facts

The top-left panels of Figures 1 and 2 show that nominal exchange rates have stochastic trends, that

is, they are nonstationary. The top-right panels of Figures 1 and 2 plot daily returns in (per cent).

Those returns clearly exhibit volatility clustering, that is periods of low volatility mingle with

periods of high volatility. The bottom-left panels of Figures 1 and 2 illustrate another stylized

facts of daily exchange rate return series: returns are not normally distributed. The empirical

distribution is more peaked than the normal density and it has fatter tails or excess kurtosis.3

[ Insert Figures 1 and 2 about here ]

The bottom-right panels of the figures plot the autocorrelogram (with 100 lags) of the squared

returns and the upper bound of the 95 per cent Bartlett’s confidence interval for the null hypothesis

of no autocorrelation. These graphs illustrate that exchange rates exhibit volatility clustering (that

is, volatility shows positive autocorrelation) and the shocks to volatility take several months to die

out. In addition, both exchange rates exhibit autocorrelation at much longer horizons than one

would expect.

Statistical properties of exchange rates

Tables 1 and 2 confirm that exchange rate returns are not normally distributed (last column of

Table 1 and JB test in Table 2), and exhibit autocorrelation in squared returns or “ARCH effects”

(see the LM -test and the Q-test on the squared returns in Table 2). The last column of Table 2

suggests that the exchange rate returns do not have a unit root at any sampling frequency.

[ Insert Tables 1 and 2 about here ]

We calculate Ljung-Box test statistics with 20 lags, denoted LB(20), to diagnose serial corre-

lation in the returns.4 While the LB(20) statistic fails to reject the null hypothesis of no serial

correlation for daily and lower frequencies, the robust test does reject that hypothesis for intradaily

frequencies except for the 1-hour EUR/USD returns.

These characteristics in Figures 1 and 2 and Tables 1 and 2 suggest that a good model for

exchange rate series should capture i) serial correlation, ii) time-varying variance, iii) long-memory

iv) peakedness as well as v) fat tails. The next section presents that attempt to capture those

features with parametric models.
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Section 2

Parametric volatility models

Conditional mean

To correctly model the conditional variance of exchange rates, one must model the conditional

mean. If Ωt−1 is the information set at time t− 1, the exchange rate return, yt, is usually modeled

as follows:

yt = E(yt|Ωt−1) + εt, (2.1)

where E (.|.) denotes the conditional expectation operator and εt is the disturbance term, with

E (εt) = 0 and E (εtεs) = 0, ∀ t 6= s.5

Researchers have often modeled the conditional mean E(yt|Ωt−1) with Autoregressive (AR)

and Moving Average (MA) terms, as well as explanatory variables. Using such specification, we

obtain the ARMAX(n, s) process

Ψ (L) (yt − µt) = Θ (L) εt

µt = µ+
n1∑

i=1

δixi,t,
(2.2)

where L is the lag operator, that is Lkyt = yt−k, Ψ (L) = 1−
n∑

i=1

ψiL
i and Θ (L) = 1 +

s∑

j=1

θjL
j .

The ARCH model

In order to model the volatility clustering in economic variables, Engle (1982) developed the Au-

toregressive Conditional Heteroscedastic (ARCH) model. An ARCH process of order q can be

written as follows:

εt = ztσt

σ2
t = ω +

q
∑

i=1

αiε
2
t−i, (2.3)

where zt is an independently and identically distributed (i.i.d.) process with E(zt) = 0 and
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V ar(zt) = 1. The model assumes that εt is serially uncorrelated, and mean zero, with time

varying conditional variance, σ2
t . To ensure that σ2

t is positive for all t, it is sufficient to impose

ω > 0 and αi ≥ 0.6

The ARCH model can describe volatility clustering because the conditional variance of εt is

an increasing function of ε2t−1. Consequently, if εt−1 was large in absolute value, σ2
t and thus εt is

expected to be large (in absolute value) as well. The unconditional variance of εt exists if ω > 0

and
q∑

i=1

αi < 1, and is given by

σ2 ≡ E[E(ε2t |Ωt−1)] =
ω

1−
q∑

i=1

αi

. (2.4)

Explanatory variables (for example macro-news announcements, central bank interventions, and

so on) can be introduced in the conditional variance equation.

The GARCH model

Bollerslev (1986) usefully generalized the simple ARCH model with the parsimonious and fre-

quently used Generalized ARCH (GARCH) model, which models current conditional variance

with geometrically declining weights on lagged squared residuals. The GARCH (p, q) model can

be expressed as:

σ2
t = ω +

q
∑

i=1

αiε
2
t−i +

p
∑

j=1

βjσ
2
t−j . (2.5)

Using the lag (or backshift) operator L, the GARCH (p, q) model becomes:

σ2
t = ω + α(L)ε2t + β(L)σ2

t ,

with α(L) = α1L+α2L
2+ . . .+αqL

q and β(L) = β1L+β2L
2+ . . .+βpL

p. As in the ARCH case,

some restrictions are needed to ensure σ2
t to be positive for all t. For example, one can impose

ω > 0, αi ≥ 0 and βj ≥ 0 as proposed by Bollerslev (1986).

Leverage effect

Stocks exhibit a “leverage effect” in which large negative returns are more likely to predict high

volatility than large positive returns. To account for the leverage effect, Glosten, Jagannathan, and

Runkle (1993) have proposed a simple model, the eponymous GJR model, which can be expressed

as

σ2
t = ω +

q
∑

i=1

(αiε
2
t−i + γiS

−
t−iε

2
t−i) +

p
∑

j=1

βjσ
2
t−j , (2.6)
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where S−
t = 1 when εt < 0 and 0 otherwise.7

In contrast to results in equity markets, foreign exchange returns usually exhibit symmetric

volatility, that is past positive and negative shocks have similar effects on future volatility (Diebold

and Nerlove, 1989; Andersen, Bollerslev, Diebold, and Labys, 2001; Hansen and Lunde, 2005a and

Laurent, Rombouts, and Violante, 2011). For instance, Bollerslev, Chou, and Kroner (1992)

argue that “whereas stock returns have been found to exhibit some degree of asymmetry in their

conditional variances, the two-sided nature of foreign exchange markets makes such asymmetries

less likely”.8

FIGARCH

Section 1 illustrated the long-range dependence in squared foreign exchange returns. That is, the

effects of a volatility shock can take a considerable time to fully decay. Ding, Granger, and Engle

(1993) find that the squared S&P500 daily returns series has positive autocorrelations over more

than 2,500 lags (or more than 10 years!). Therefore, neither an I(0) process with exponential

decay in autocorrelations nor an I(1) volatility process with no decay in autocorrelations can easily

explain this phenomenon.9

To mimic the behavior of the correlogram of the observed volatility, Baillie, Bollerslev, and

Mikkelsen (1996) (hereafter BBM) introduce the Fractionally Integrated GARCH (FIGARCH)

model. The conditional variance of the FIGARCH (p, d, q) is given by:

σ2
t = ω[1− β(L)]

−1

︸ ︷︷ ︸

ω∗

+
{

1− [1− β(L)]
−1
φ(L)(1− L)d

}

︸ ︷︷ ︸

λ(L)

ε2t , (2.7)

or σ2
t = ω∗ +

∑∞
i=1 λiL

iε2t = ω∗ + λ(L)ε2t , with 0 ≤ d ≤ 1 and φ(L) is a polynomial of order q.

It is fairly easy to show that ω > 0, β1 − d ≤ φ1 ≤ 2−d
3 and d

(
φ1 − 1−d

2

)
≤ β1 (φ1 − β1 + d) are

sufficient to ensure that the conditional variance of the FIGARCH (1, d, 1) is positive almost surely

for all t.10 Setting φ1 = 0 gives the condition for the FIGARCH (1, d, 0).

Estimation

Researchers commonly estimate ARCH-type models by maximum likelihood, which requires that

they specify the distribution of the innovation process zt. Weiss (1986) and Bollerslev and

Wooldridge (1992) show that under the normality assumption, the quasi-maximum likelihood

(QML) estimator is consistent if the conditional mean and the conditional variance are correctly
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specified. The log-likelihood function of the standard normal distribution is given by:

LGauss = −1

2

T∑

t=1

[
log (2π) + log

(
σ2
t

)
+ z2t

]
, (2.8)

where T is the number of observations, zt = εt/σt and εt = yt − E(yt|Ωt−1).

The normal distribution cannot account for the pronounced “fat tails” of exchange rate returns,

however—see Figure 1 and Table 1. To account for this characteristic, researchers widely use fat-

tailed distributions, such as the Student-t distribution and the Generalized Error distribution

(GED) (see Palm, 1996; Pagan, 1996 and Bollerslev, Chou, and Kroner, 1992). The log-likelihood

for a Student-t distribution is:

LStud = T

{

log Γ

(
υ + 1

2

)

− log Γ
(υ

2

)

− 1

2
log [π(υ − 2)]

}

− 1

2

T∑

t=1

[

log(σ2
t ) + (1 + υ) log

(

1 +
z2t

υ − 2

)]

, (2.9)

where υ is the degrees of freedom, 2 < υ ≤ ∞ and Γ(.) is the gamma function. The GED

log-likelihood function is given by:

LGED =

T
∑

t=1

[

log

(

υ

λυ

)

− 0.5

∣

∣

∣

∣

zt
λυ

∣

∣

∣

∣

υ

− (1 + υ−1) log(2)− log Γ

(

1

υ

)

− 0.5 log(σ2
t )

]

, (2.10)

where 0 < υ < ∞ and

λυ ≡

√

Γ (1/υ) 2(−2/υ)

Γ (3/υ)
.

These densities account for fat tails but not asymmetry. Both skewness and kurtosis, however,

are important in financial applications, such as in asset pricing models, portfolio selection, op-

tion pricing theory and Value-at-Risk. To properly model skewness, Lambert and Laurent (2000,

2001) and Bauwens and Laurent (2005) apply and extend the skewed-Student density proposed

by Fernández and Steel (1998) to the GARCH framework. The log-likelihood of the standardized

(zero mean and unit variance) skewed-Student is:

LSkSt = T

{

log Γ

(
υ + 1

2

)

− log Γ
(υ

2

)

− 0.5 log [π (υ − 2)] + log

(

2

ξ + 1
ξ

)

+ log (s)

}

− 0.5

T∑

t=1

{

log σ2
t + (1 + υ) log

[

1 +
(szt +m)

2

υ − 2
ξ−2It

]}

, (2.11)

where

It =







1 if zt ≥ −m
s

−1 if zt < −m
s

,
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ξ is the asymmetry parameter, υ is the degree of freedom of the distribution,

m =
Γ
(
υ+1
2

)√
υ − 2

√
πΓ
(
υ
2

)

(

ξ − 1

ξ

)

,

and

s =

√
(

ξ2 +
1

ξ2
− 1

)

−m2.

There are other definitions of skewed-Student distribution (see for example Hansen, 1994; Mit-

tnik and Paolella, 2000; Aas and Haff, 2006; Dark, 2010; Deschamps, 2011). For instance, Aas and

Haff (2006) extend the skewed-Student distribution to the Generalized Hyperbolic skewed-Student

distribution (GHSST), while Deschamps (2011) proposes a Bayesian estimation of GARCH models

with GHSST errors. Forsberg and Bollerslev (2002) use a GARCH model with Normal Inverse

Gaussion (NIG) error distributions on exchange rate data.

Application

How do the models described above compare? Tables 3 and 4 report model estimates for the

EUR/USD and USD/JPY return series, respectively.11

[ Insert Tables 3 and 4 about here ]

The first columns of those tables report the quasi-maximum likelihood estimation of an ARCH

(1) model. The Box-Pierce statistics on squared standardized returns are way to high suggesting

that the model is misspecified for both series. The GARCH (1, 1) clearly improves upon the ARCH

(1) model because it has a much higher log likelihood and no serial correlation.

We then ask whether the EUR/USD and USD/JPY return series display asymmetric volatility

or leverage effects. The GJR model (column 3) does not significantly improve on the fit of the

GARCH (1, 1) model and so provides no evidence of leverage effect for either exchange rate. This

result implies that the news impact curve is likely to be symmetric, that is past positive shocks

have the same effect on today’s volatility as past negative shocks.

To account for the potential presence of long-memory in volatility (as suggested by Figures 1

and 2), we also estimate a FIGARCH (1, d, 1) model. The data do not reject the additional

flexibility of the FIGARCH model. This might be due to breaks in the volatility process, however,

rather than genuine long memory. Furthermore, the last three columns of Tables 3 and 4 report

parameter estimates of the FIGARCHmodel with Student, skewed-Student and GED distributions,

respectively. As expected, the normal distribution is rejected. For the EUR/USD data, the

estimated log(ξ) parameter is not statistically different from 0, which allows us to conclude that

8



the conditional distribution of the daily returns is likely to be well described as symmetric but has

fatter tails than the normal.12

To investigate the stability of the parameters, we split the EUR/USD sample into two sub-

periods, that is before and during the subprime mortgage crisis. The results suggest that the d

parameter of the FIGARCH model was smaller than 0.5 during the pre-crisis period and about 0.9

during the crisis. This result may suggest that volatility shocks display much higher persistence

during the turbulent periods than in normal times.13

In summary, our empirical results show that FIGARCH models with fat-tailed distributions

are capable of capturing serial correlation, time-varying variance, long-memory, peakedness as well

as fat tails. In line with the literature, we find no evidence of leverage effect for the EUR/USD

and USD/JPY exchange rates.

Section 3

Non-parametric volatility estimators

Realized volatility

The models described in the previous section are parametric and usually designed to estimate

the daily, weekly or monthly volatility using data sampled at the same frequency. The recent

widespread availability of intradaily asset prices have permitted econometricians to use high-

frequency data to compute ex-post measures of volatility at a lower frequency (see French, Schwert,

and Stambaugh, 1987). This method is known as the “realized volatility” approach. The popular

continuous-time diffusion provides the most commonly used framework to model realized volatility:

dp(t) = µ(t)dt+ σ(t)dW (t), t ≥ 0, (3.1)

where dp(t) denotes the logarithmic price increment, µ(t) is a continuous locally bounded variation

process, σ(t) is a strictly positive and càdlàg (right-continuous with left limits) stochastic volatility

process and W (t) is a standard Brownian motion. Security prices evolve in a nearly continuous

fashion throughout the trading day and so it is natural to think of the price and return series

of financial assets as arising through discrete observations from an underlying continuous-time
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process.

Assuming that the time length of one day is one, what does Equation (3.1) imply for the

one-period daily return? It follows immediately that

rt ≡ p(t)− p(t− 1) =

∫ t

t−1

µ(s)ds+

∫ t

t−1

σ(s)dW (s). (3.2)

The volatility for the continuous-time process over [t− 1, t] is therefore linked to the evolution of

the spot volatility σ(t). Furthermore, returns are normally distributed, conditional on the sample

path of the drift and the spot volatility processes,

rt ∼ N

(∫ t

t−1

µ(s)ds, IVt

)

, (3.3)

where IVt denotes the so-called integrated variance (which converges also to the quadratic variation

in this case), and is defined as follows:

IVt ≡
∫ t

t−1

σ2(s)ds. (3.4)

IVt is latent because σ
2(s) is not directly observable. The daily squared return y2t provides a simple

unbiased non-parametric estimate of IVt in this framework.

Andersen and Bollerslev (1998a) were the first to point-out that a much more precise ex-post

estimator than y2t can be obtained by simply summing up intraday squared returns. They called

this estimator realized volatility.14 This estimator is defined as follows:

RVt =

M∑

i=1

y2t,i. (3.5)

The sum of the high-frequency squared returns is an “error free/model free” measure of the daily

volatility that is relatively insensitive to sampling frequency. The literature finds that under Model

(3.1) and some suitable conditions (like the absence of serial correlation in the intraday returns)

RVt consistently estimates the integrated volatility in the sense that when ∆ → 0, it measures the

latent integrated volatility IVt perfectly. However, in practice, at very high frequencies, returns are

polluted by microstructure noise (bid-ask bounce, unevenly spaced observations, discreteness,...).

This “errors-in-variables” problem produces autocorrelation in the high-frequency returns (see

Table 2). Researchers have proposed several solutions, such as sparse sampling (for example Bandi

and Russell, 2008, 2005), subsampling and two time-scale estimators (for example Zhang, Mykland,

and Aı̈t-Sahalia, 2005), and kernel-based estimators (for example Hansen and Lunde, 2004, 2005b,

2006; Barndorff-Nielsen, Hansen, Lunde, and Shephard, 2008), to tackle these microstructure
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problems. McAleer and Medeiros (2008) compare these methods and provide a practical guide to

estimate integrated variance under microstructure noise.

[ Insert Figure 3 about here ]

The left-block graphs of Figure 3 illustrate the similarity of RV measures using 5-minute, 30-

minute, and 1-hour EUR/USD returns.

Bi-power variation

Empirical studies have shown that a continuous diffusion model as in Equation (3.1) fails to

explain some characteristics of asset returns such as sudden spikes or jumps. The inadequacy of

the standard stochastic diffusion model has led to developments of continuous time jump-diffusion

and stochastic volatility models.

One class of these models is known as the “Brownian SemiMartingale with Finite Activity

Jumps” (hereafter denoted BSMFAJ) model. This model has two main components: i) a diffusion

component to capture the smooth variation of the price process, and ii) a jump component to

account for the discontinuities in the observed prices. Intuitively, a jump process is defined to be

of finite activity if the number of jumps in any interval of time is finite.15 Andersen, Bollerslev,

and Dobrev (2007) cite several authors who found that this is a realistic model for the price series

of many financial assets. A BSMFAJ log-price diffusion admits the representation

dp(t) = µ(t)dt+ σ(t)dW (t) + κ(t)dq(t), t ≥ 0, (3.6)

where dq(t) is a counting process with dq(t) = 1 corresponding to a jump at time t and dq(t) = 0

otherwise. The (possibly time-varying) jump intensity is l(t) and κ(t) is the size of the corre-

sponding jump. Model (3.6) implies that realized volatility converges in probability to the sum of

integrated diffusion variance and the sum of squared jumps:

RVt →
∫ t

t−1

σ2(s)ds+
∑

t−1<s≤t

κ2(s), (3.7)

when ∆ → 0.

In other words, in the absence of jumps, the realized volatility consistently estimates the in-

tegrated volatility, but does not do so in the presence of jumps. Barndorff-Nielsen and Shephard

(2004) showed that under Model (3.6), the normalized sum of products of the absolute value of

contiguous returns (that is bi-power variation) is a consistent estimator for IVt (see Equation (3.4).
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The bi-power variation is defined as:

BVt ≡ µ−2
1

M

M − 1

M∑

i=2

|yt,i||yt,i−1|, (3.8)

where µ1 ≡
√

2/π ≃ 0.79788.

Unlike RVt, BVt is designed to be robust to jumps because its building block is the product

between two consecutive returns instead of the squared return. If one of the returns corresponds to

a jump and the next one follows the BSM diffusion process, then the product has a small impact on

BVt, being the sum of many of these building blocks. If the jump process has finite activity then

“almost surely” jumps cannot affect two contiguous returns for ∆ → 0 (or equivalently M → ∞)

and the jump process has a negligible impact on the probability limit of BVt, which coincides

with the IVar. Under the BSMFAJ model, bipower variation converges in probability to diffusion

variance as the sampling frequency increases to infinity.

plim∆→0BVt =

∫ t

t−1

σ2(s)ds. (3.9)

The middle graphs of Figure 3 show that there are less spikes in BVt than in RVt, suggesting

that BVt is indeed more robust to jumps.

Realized outlyingness weighted variance

One of the disadvantages of the BVt is that it is downward biased in the presence of “zero” measured

returns in the sample. Moreover, jump might significantly affect BVt when returns are computed

over longer time intervals such as 5 or 30 minutes. For these reasons, Boudt, Croux, and Laurent

(2011a) have proposed a robust-to-jumps alternative to BVt. The realized outlyingness weighted

variance (ROWV art) is defined as:

ROWVart = cw

∑M
i=1 w(dt,i)y

2
t,i

1
M

∑M
i=1 w(dt,i)

, (3.10)

where w(.) is the weight function, dt,i is an outlyingness, and the cw is a correction factor to ensure

that the ROWV art is consistent for the IVt under the BSM and BSMFAJ models.16 To compute

ROWV art, one should measure the outlyingness dt,i of return yt,i as the square of the robustly

standardized return. That is,

dt,i =

(
yt,i
σ̂t,i

)2

, (3.11)

where σ̂t,i is a robust estimate of the instantaneous volatility computed from all the returns be-

longing to the same local window as yt,i.
17 Because of the presence of intraday periodicity in
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volatility, Boudt, Croux, and Laurent (2011a) propose to compute dt,i on returns that have their

intraday periodicity filtered out instead of raw returns.18 Further, Boudt, Croux, and Laurent

(2011b) chose a weight function that maintains a compromise between robustness and efficiency.

They recommend using the Soft-rejection (SR) weight function with 95 per cent quantile of the χ2
1

distribution function. The SR weight function is defined as:

wSR(z) = min {1, k/z} , (3.12)

where k a tuning parameter to be selected. The right graphs of Figure 3 show that the ROWV art

is less affected by jumps than RVt or BVt.

MinRV and MedRV

Andersen, Dobrev, and Schaumburg (2008) propose two estimators of IVt, MinRVt and MedRVt,

that are consistent in the presence of jumps and are less sensitive to zero returns than BVt. These

estimators are defined as follows:

MinRVt ≡ M
M

M − 1
µ2

M∑

i=2

min(|yt,i|, |yt,i−1|)2 (3.13)

MedRVt ≡ M
M

M − 2
µ3

M∑

i=3

med(|yt,i|, |yt,i−1|, |yt,i−2|)2, (3.14)

where µ2 ≡ π/(π − 2) and µ3 ≡ 3π/(6 − 4
√
3 + π), “Min” stands for minimum and “Med” for

median.

[ Insert Figure 4 about here ]

Figure 4 plots MinRVt and MedRVt for the three sampling frequencies. It is hard to conclude

which measure is superior at the considered sampling frequencies.

Truncated power variation

We have reviewed several robust-to-jumps estimaters—that is, BVt, ROWV art, MinRVt and

MedRVt—of integrated volatility, which have been proved robust for BSMFAJ models. Indeed,

Aı̈t-Sahalia (2004), Barndorff-Nielsen, Shephard, and Winkel (2006), and Lee and Hannig (2010)

show the presence of other types of jumps in the evolution of prices. These type of jumps are

called infinite activity Lévy type jumps. That is, if the jumps are type of infinite activity, then

the number of jumps (the intensity) in any interval of time is infinite. In this regard, several
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estimations of IVt have been also designed to be immune to jumps with infinite activity (hereafter

denoted IA).

We now consider log-price processes that belong to the Brownian SemiMartingale with Infinite

Activity Jumps (BSMIAJ) family of models. Under the BSMIAJ model, the diffusion component

captures the smooth variation of the price process as before, while the jump component accounts

for both rare, large discontinuities and frequent, small jumps in the prices. A BSMIAJ log-price

diffusion admits the representation

dp(t) = µ(t)dt+ σ(t)dW (t) + κ(t)dq(t)
︸ ︷︷ ︸

finite activity

+ h(t)dL(t),
︸ ︷︷ ︸

infinite activity

t ≥ 0, (3.15)

where q(t) is a counting process (possibly a Poisson process) as in Model (3.6), and L(t) represents

either an α-stable process or a Cauchy process as in Lee and Hannig (2010). κ(t) and h(t) further

denote the jump sizes of the corresponding jump processes, respectively. The jump component of

Model (3.15) captures both finite and infinite activity price jumps as in the studies of Aı̈t-Sahalia

and Jacod (2009a, 2009b, 2010, 2011), Todorov and Tauchen (2006) and Carr and Wu (2003),

among others.

Under the BSMIAJ, Mancini (2009) and Bollerslev and Todorov (2011) suggest using the

truncated power variation TVt to consistently estimate IVt. The truncated power variation TVt is

defined as:

TVt(∆) ≡
M∑

i=1

(yt,i)
21|yt,i|≤g(∆)ω̃

P−→
∫ t

t−1

σ2(s)ds, (3.16)

where g > 0, and ω̃ ∈ (0, 1/2) are the thresholds to truncate the returns. TVt eliminates the large

returns and retains the ones that are lower than the specified thresholds. To estimate TVt, we use

the parameter values of g = 0.3× 9, and ω̃ = 0.47, following Aı̈t-Sahalia and Jacod (2009b).

The block-graphs on the right of Figure 4 plot the truncated power variation for the EUR/USD,

constructed from the 5-minute, 30-minute and 1-hour intraday returns. The graphs show that the

TVt is highly robust to jumps in that it exhibits fewer spikes than MinRVt and MedRVt.

[ Insert Table 5 and Figure 5 about here ]

As an alternative comparison, Figure 5 plots the first 50 lags of the autocorrelation function of

RVt, BVt and TVt constructed from 5-minute, 30-minute and 1-hour returns. This figure clearly

suggests the presence of long-memory in volatility. The estimated long-memory parameters given

by the log-periodogram regression method of Geweke and Porter-Hudak (1983) are about 0.30, 0.35

and 0.45 for RVt, BVt and TVt, respectively (see the last column in Table 5). These coefficient

estimates suggest that the more robust-to-jumps estimators also imply more evidence of long-
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memory persistence in volatility.19

Section 4

Intraday periodicity

A time series is periodic if it shows a regular, time-dependent structure. Foreign exchange volatility

shows strong intraday periodic effects caused by regular trading patterns, such as openings and

closings of the three major markets, Asia, Europe and North America, as well as effects from

regularly scheduled macroeconomic announcement effects.

Andersen and Bollerslev (1997) show that failure to account for this intra-daily periodicity is

likely to result in misleading statistical analyses because intraday returns do not conform at all to

the theoretical aggregation results for the GARCH models.

This section documents the intraday periodicity found in foreign exchange volatility and dis-

cusses methods of modeling it.

[ Insert Figure 6 about here ]

Figure 6 displays a distinct U-shaped patterns in the ACF for the 5-minute, 30-minute and 1-hour

absolute returns |yt,i|. Standard ARCH models imply a geometric decay in the absolute return

autocorrelation structure and simply cannot accommodate strong regular cyclical patterns of the

sort displayed in Figure 6.

[ Insert Figure 7 about here ]

Figure 7 depicts the mean absolute EUR/USD returns over the (288) five-minute intervals. This

intraday pattern is quite similar across all days of the week with discrete changes in quoting activity

marking the opening and closing of business hours in the three major regional centres, all of which

have their own activity pattern.

In illustrating the properties of intraday foreign exchange volatility, we use the following hours

of active trading: the Far East is open from 16:00 EST (21:00 GMT) to 1:00 EST (6:00 GMT),

Europe trades between 2:00 EST (7:00 GMT) and 11:00 EST (16:00 GMT) and trading in North

America occurs from 7:00 EST (12:00 GMT) to 16:00 EST (21:00 GMT). Using the discussion
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of market opening and closures presented above, we explain the intraday periodic volatility as

follows. At 19:00 EST, the Far Eastern market has already been trading for around three hours

and market activity is high. From 19:00 EST until about 22:00 EST, activity levels and volatility

remain high. The lunchtime in Tokyo (22:00 EST- 23:45 EST) is the point of the day corresponding

to the most prominent feature of the series. Volatility drops sharply and regains its former value

at about 0:00 EST. Generally, there is a small peak in volatility as Europe begins to contribute to

activity at around 2:00 EST and the Far Eastern market activity begins to wane. During European

lunch hours (starting around 6:30 EST), both activity and volatility show a slight lull. The most

active period of the day is clearly when both the European and North American markets are open

(between 7:00 EST and 11:00 EST). Volatility starts to decline as first the European and then

US markets wind down. At around 16:00 EST, the Asian market begins to trade again and the

daily cycle is repeated after midnight. This intraday pattern is consistent with previous evidence

reported in the literature, see Andersen and Bollerslev (1998b) among others.

Classical and robust estimation of intraday periodicity

Recall that we use T days of ⌊1/∆⌋ ≡ M equally-spaced and continuously compounded intraday

returns and that yt,i is the i-th return of day t. Assume first that the log-price follows a Brow-

nian SemiMartingale (BSM) diffusion as in Equation (3.1). If ∆ is sufficiently small, returns are

conditionally normally distributed with mean zero and variance σ2
t,i =

∫ t+i∆

t+(i−1)∆
σ2(s)ds, that is

yt,i ≈ σt,izt,i, where zt,i ∼ N(0, 1). Due to the daily/weekly cycle of opening and closing times

of the financial centers around the world, the high-frequency return variance σ2
t,i has a periodic

component f2t,i.

At daily frequencies, the intraday periodic component accounts for almost all variation in

variance. Andersen and Bollerslev (1997, 1998b), Andersen, Bollerslev, and Dobrev (2007) and

Lee and Mykland (2008) use local windows of one day. It is therefore realistic to assume that

σ2
t,i = st,ift,i, where st,i is the stochastic part of the intradaily volatility that is assumed to be

constant over the day but varies from one day to another.

Andersen and Bollerslev (1997, 1998b) suggest estimating st,i by ŝt =
√

1
M ht ∀i = 1, . . . ,M ,

where ht is the conditional variance of day t obtained by estimating a GARCH model on daily

returns. Under the BSM model, a more efficient estimator for st,i is ŝt =
√

1
MRVt.

As explained above, under the BSMFAJ model, the daily integrated volatility is better esti-

mated using Barndorff-Nielsen and Shephard (2004)’s realized bi-power variation, that is, ŝt,i =
√

1
M−1BVt, where BVt is the bi-power variation computed on all the intraday returns of day t

(see Equation (3.8)). In the presence of infinite activity Lévy jumps—Model (3.15)—the truncated
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power variation TVt—Equation (3.16)—would be a better choice for estimating daily integrated

volatility. In this case, ŝt,i =
√

1
M−1TVt, where TVt is the truncated power variation computed

on all the intraday returns of day t.20

Under this model, the standardized high-frequency return yt,i = yt,i/ŝt,i ∼ N(0, f2t,i) as ∆ → 0.

This result suggests estimating the periodicity factor using either a non-parametric or parametric

estimator of the scale of the standardized returns.

Non-parametric estimation of periodicity

The non-parametric estimates of intraday volatility patterns are all based on average variation in

volatility across different periods of the week. In other words, the non-parametric estimates for the

volatility periodicity factor on Wednesdays at 10:00 AM are some sort of weighted average of the

magnitude of the returns on all Wednesdays at 10:00 AM. The non-parametric estimators differ

in whether or how they compensate for the presence of jumps, which should be excluded from the

estimation of the periodic diffusion volatility factor.

The classical periodicity estimator is based on the standard deviation

f̂SD

t,i =
SDt,i

√
1
M

∑M
j=1 SD

2
t,j

, (4.1)

where SDt,i =
√

1
nt,i

∑nt,i

j=1 y
2
j;t,i. This estimator is similar to Taylor and Xu (1997)’s periodicity

estimate based on averages of squared returns. In absence of jumps, f̂SD
t,i efficiently estimates fSD

t,i

if the standardized returns are normally distributed. In the presence of jumps, this estimator is

useless, since it suffices that one observation in the sample is affected by a jump to make the

periodicity estimate arbitrarily large.

Because f̂SD
t,i does not robustly estimate its population counterpart in the presence of jumps,

Boudt, Croux, and Laurent (2011b) propose replacing the standard deviation in (4.1) by a robust

non-parametric estimator. One candidate is the median absolute deviation (MAD), which is pro-

portional to the size of the median deviation from the median of a series. The MAD of a sequence

of observations y1, . . . , yn is defined as

1.486 ·mediani|yi −medianjyj |, (4.2)

where 1.486 is a correction factor to guarantee that the MAD is a consistent scale estimator at the
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normal distribution. The MAD estimator for the periodicity factor of yt,i equals

f̂MAD

t,i =
MADt,i

√
1
M

∑M
j=1 MAD2

t,j

. (4.3)

Among the large number of robust-scale estimators available in the literature (see Maronna,

Martin, and Yohai, 2006, for an overview), Boudt, Croux, and Laurent (2011b) also recommend

the use of the Shortest Half scale estimator proposed by Rousseeuw and Leroy (1988), because

it remains consistent in the presence of infinitesimal contaminations by jumps in the data. Im-

portantly, the Shortest Half Scale estimator has the smallest jump-induced bias among a wide

class of estimators. Under normality, the Shortest Half scale estimator is as efficient as the MAD

and the interquartile range. It is also computationally convenient and does not need any location

estimation.

To define the Shortest Half scale estimator, we denote the corresponding order statistics

y(1);t,i, . . . , y(nt,i);t,i such that y(1);t,i ≤ y(2);t,i ≤ . . . ≤ y(nt,i);t,i. The shortest half scale is the

smallest length of all “halves” consisting of ht,i = ⌊nt,i/2⌋ + 1 contiguous order observations.

These halves equal {y(1);t,i, . . . , y(ht,i);t,i}, . . ., {y(nt,i−ht,i+1);t,i, . . . , y(nt,i);t,i}, and their length is

y(ht,i);t,i − y(1);t,i, . . ., y(nt,i);t,i − y(ht,i);t,i, respectively. The corresponding scale estimator (cor-

rected for consistency under normality) equals the minimum of these lengths:

ShortHt,i = 0.741 ·min{y(ht,i);t,i − y(1);t,i, . . . , y(nt,i);t,i − y(nt,i−ht,i+1);t,i}. (4.4)

The Shortest Half estimator for the periodicity factor of yt,i equals

f̂ShortH

t,i =
ShortHt,i

√
1
M

∑M
j=1 ShortH

2
t,j

. (4.5)

The shortest half dispersion is highly robust to jumps, but it has only a 37 per cent relative

efficiency under normality of the yt,i’s. Boudt, Croux, and Laurent (2011b) show that the standard

deviation applied to the returns weighted by their outlyingness under the ShortH estimate offers

a better trade-off between the efficiency of the standard deviation under normality and robustness

to jumps, that is

f̂WSD

t,i =
WSDt,i

√
1
M

∑M
j=1 WSD2

t,j

, (4.6)

where

WSDt,j =

√
√
√
√1.081 ·

∑nt,j

l=1 w[(yl;t,j/f̂
ShortH
t,j )2]y2l;t,j

∑nt,j

l=1 w[(yl;t,j/f̂
ShortH
t,j )2]

.

Because the weighting is applied to the squared standardized returns, which are extremely
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large in the presence of jumps, Boudt, Croux, and Laurent (2011b) recommend the use of the hard

rejection with threshold equal to the 99 per cent quantile of the χ2 distribution with one degree

of freedom, that is

w(z) =







1 if z ≤ 6.635

0 else.
(4.7)

The factor 1.081 ensures the consistency of the estimator under normality. The Weighted Standard

Deviation (WSD) in (4.6) has a 69 per cent efficiency under normality of the yt,i’s.

Parametric estimation of periodicity

The non-parametric periodicity estimators use the standardized returns that have the same pe-

riodicity factor. This means that if we are interested in the impact of calender effects, the non-

parametric estimators take the returns that are observed on the same time of the day, and same

day of the week. Alternatively, Andersen and Bollerslev (1997) show that one can efficiently esti-

mate the periodicity process with trigonometric functions of time. These trigonometric functions

implicitly constrain the periodicity to be “smooth” over time in ways that the non-parametric

techniques, which estimate the periodicity factor independently during each time period, do not.

Under the assumption that returns are not affected by jumps, Andersen and Bollerslev (1997) show

that log(
|yt,i|
st,i

) ≈ log ft,i + log |zt,i|, which isolates ft,i as follows,

log(|yt,i/st,i|)− c = log ft,i + ut,i, (4.8)

where the error term ut,i is i.i.d. distributed with mean zero and has the density function of the

centered absolute value of the log of a standard normal random variable, that is

g(z) =
√

2/π exp[z + c− 0.5 exp(2(z + c))]. (4.9)

The parameter c = −0.63518 equals the mean of the log of the absolute value of a standard normal

random variable. Andersen and Bollerslev (1997) then propose modeling log ft,i as a function h of

a vector of variables x (such as sinusoid and polynomial transformations of the time of the day)

that is linear in the parameter vector θ

log ft,i = h(xt,i; θ) = x′t,iθ. (4.10)
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Combining (4.8) with (4.10), we obtain the following regression equation

log(|yt,i|)− c = x′t,iθ + ut,i. (4.11)

Researchers commonly estimate the parameter θ in (4.11) by OLS. This approach is neither

efficient nor robust, because the error terms are not normally distributed. Denote the loss functions

of the OLS and Maximum Likelihood (ML) estimators by ρOLS(z) = z2 and by

ρML(z) = −0.5 log(2/π)− z − c+ 0.5 exp(2(z + c)),

respectively. The OLS and ML estimates equal

θ̂OLS = argmin
1

MT

T∑

t=1

M∑

i=1

ρOLS(ut,i) and θ̂
ML = argmin

1

MT

T∑

t=1

M∑

i=1

ρML(ut,i), (4.12)

where ut,i is a function of θ.

As an alternative to the OLS and ML estimators, Boudt, Croux, and Laurent (2011b) propose

using the Truncated Maximum Likelihood (TML) estimator introduced by Marazzi and Yohai

(2004). This estimator gives a zero weight to outliers, as defined by the value of the ML loss function

evaluated at the corresponding residual computed under the robust non-parametric estimator f̂WSD

in (4.6). Let

uWSD

t,i = log yt,i − c− log f̂WSD

t,i . (4.13)

Observations for which ρML(uWSD
t,i ) is large, have a low likelihood and are therefore likely to be

outliers (Marazzi and Yohai, 2004). Denote q an extreme upper quantile of the distribution of ut,i.

The TML estimator is defined as

θ̂TML =
1

∑T
t=1

∑M
i=1 wt,i

T∑

t=1

M∑

i=1

wt,iρ(ut,i), (4.14)

with

wt,i =







1 if ρML(uWSD
t,i ) ≤ ρML(q)

0 else.

The parametric estimate for the periodicity factor equals

f̂TML

t,i =
expx′t,iθ̂

TML

√
1
M

∑M
j=1(expx

′
t,j θ̂

TML)2
, (4.15)

and similarly for f̂OLS
t,i and f̂ML

t,i . Boudt, Croux, and Laurent (2011b) show that parametric methods

are generally much more efficient than non-parametric ones. They also show that in the presence
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of jumps, the TML estimator is the most robust method. However, the main weakness of this

approach is that little is known about the asymptotic distribution of the TML estimates in the

presence of jumps, which makes the statistical inference based on this method challenging.

[ Insert Figures 8 and 9 about here ]

Figures 8 and 9 depict the non-parametric and parametric periodicity estimates of the EUR/USD

and USD/JPY series. In Figure 8, we see that the SD method (that is Taylor and Xu, 1997 filter) is

indeed more sensitive to jumps than the other non-parametric estimators. Among the parametric

candidates given in Figures 9, TML periodicity estimates seem to be smoother than the OLS and

ML estimates.

Are the periodic volatility patterns common to several time series? To investigate this issue,

Hecq, Laurent, and Palm (2011) propose a reduced rank method to examine the presence of

such commonalities in the intraday cyclical movements. This approach, along with a multivariate

information criteria, further allows to determine the variables that explain the common periodic

features. In an application to thirty US stocks, their empirical results suggest using three common

sources to describe the periodic patterns, whereas they find no evidence of common factors in the

intradaily periodic volatility of the major exchange rates.

Section 5

Jumps

Researchers have noted jumps (that is, discontinuities) in asset prices for some time. The efficient

markets hypothesis easily explains many jumps because it predicts very rapid systematic price

reactions to news surprises to prevent risk-adjusted profit opportunities. Decomposing volatility

into jumps and time-varying diffusion volatility is important because these two components have

different implications for modeling, forecasting, and hedging. For example, persistent time-varying

diffusion volatility would help forecast future volatility, while jumps might contain no predictive

information or even distort volatility forecasts (Neely, 1997 and Andersen, Bollerslev, and Diebold,

2007). Therefore, it makes sense to detect jumps and either model them separately or clean them

from the data. This section describes recent tests for jumps in foreign exchange rates.
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Daily non-parametric tests for large jumps

The difference between RVt and any robust-to-jumps estimator of IVt, denoted ˆIV t, estimates

the jump contribution or realized jumps under the BSMFAJ model. That is, the realized jump

measure equals a realized volatility measure less a robust-to-jumps measure of diffusion volatility.

RJt ≡ RVt − ˆIV t →
∑

t−1<s≤t

κ2(s), (5.1)

where ˆIV t is for instance BVt or ROWV art. We will review several statistics that estimate jumps

using the difference between RV and robust-to-jumps estimates of IV.

Based on the theoretical results of Barndorff-Nielsen and Shephard (2006) that

√
∆






RVt − IVt

ˆIV t − IVt






d→MN




0,






2 2

2 θ




 IQt




 if ∆ → 0, (5.2)

where IQt ≡
∫ t

t−1
σ4(s)ds is the integrated quarticity. Andersen, Bollerslev, and Diebold (2007)

have developed a formal test for (daily) jumps, that is

Zt ≡
RVt − ˆIV t

√

(θ − 2) 1
M

ˆIQt

, (5.3)

where ˆIQt is a robust-to-jumps estimate of the integrated quarticity, IQt. Andersen, Bollerslev,

and Diebold (2007) estimate integrated variance with bipower variation and use the Tri-power

quarticity TQt to estimate IQt, where

TQt ≡M
M

M − 2
µ−3
4/3

M∑

i=3

|yt,i|4/3|yt,i−1|4/3|yt,i−2|4/3, (5.4)

with µ4/3 ≡ 22/3Γ(7/6)Γ(1/2)−1.

Another popular estimator for IQt, in the spirit of the bi-power (or multi-power) variation, is

the Quad-power quarticity QQt, that is

QQt ≡M
M

M − 3
µ−4
1

M∑

i=4

|yt,i||yt,i−1||yt,i−2||yt,i−3|. (5.5)

When ˆIV t = BVt, θ = µ−4
1 + 2µ−2

1 − 3 ≈ 2.609. The main drawback of TQt and QQt is that like

BVt they are downward biased in the presence of zero returns. To overcome this problem, Boudt,

Croux, and Laurent (2011a) have proposed replacing ˆIV t in Equation (5.3) by ROWV art and ˆIQt
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by the Realized Outlyigness Weighted Quarticity

ROWQuarticityt = dw

∑M
i=1 w(dt,i)y

4
t,i

∑M
i=1 w(dt,i)

, (5.6)

where w(.) is the hard rejection weight function. Table 6 reports the correction factor dw and the

asymptotic variance of the ROWVar θ for several choices of the critical level β (used to get the

outlyingness threshold k).

[ Insert Table 6 about here ]

In the spirit of their MinRV and MedRV estimators, Andersen, Dobrev, and Schaumburg

(2008) propose two alternative robust estimators of the integrated quarticity, namely the MinRQ

and MedRQ. The formulas are given herebelow:

MinRQt ≡ M
M

M − 1
µ4

M∑

i=2

min(|yt,i|, |yt,i−1|)4 (5.7)

MedRQt ≡ M
M

M − 2
µ5

M∑

i=3

med(|yt,i|, |yt,i−1|, |yt,i−2|)4, (5.8)

where µ4 ≡ π/(3π − 8) and µ5 = 3π/(9π + 72 − 52
√
3). Note also that Andersen, Dobrev, and

Schaumburg (2008) show that both the MinRV and MedRV satisfy (5.2), where θ equals 3.81 for

the former and 2.96 for the latter (the MedRV being asymptotically more efficient than the MinRV

in absence of jumps).

Barndorff-Nielsen and Shephard (2006) advocated the use of a log version of the Zt statistics.

According to them, the following statistic

logZt ≡
log(RVt)− log( ˆIV t)
√

(θ − 2) 1
M

ˆIQt
ˆIV

−2

t

, (5.9)

has better finite sample properties.

They also proposed another version of this statistic, denoted maxlogZt, where

maxlogZt ≡
log(RVt)− log( ˆIV t)

√

(θ − 2) 1
Mmax{1, ˆIQt

ˆIV
−2

t }
. (5.10)

Under the null of no jump on day t, Zt, logZt and maxlogZt are asymptotically (as ∆ → 0)

standard normal. The sequences {Zt}Tt=1, {logZt}Tt=1 and {maxlogZt}Tt=1 provide estimates of the

daily occurrence of jumps in the price process.
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Intradaily non-parametric tests for large jumps

The tests presented in the previous section rely on intraday returns to test for jumps at a lower

frequency, for example, over one day. This section describes the tests that examine whether any

given intra-day return yt,i is from a purely continuous diffusion or is due to a jump in the price

process. Lee and Mykland (2008) propose detecting intraday jumps by comparing returns to a

local volatility measure. However, what constitutes an abnormally big return depends on the

prevailing level of volatility. That is, in times of high volatility, an abnormal return is expected to

be bigger than an abnormal return in times of low volatility. Hence, Lee and Mykland (2008) study

the properties of the ratio of the tested return over a measure of local volatility. They propose a

powerful and parsimonious methodology that allows to test whether any return contains a jump

component.

Their jump statistic, denoted as Jt,i, is defined as the absolute return divided by an estimate

of the local standard deviation σ̂t,i, that is

Jt,i =
|yt,i|
σ̂t,i

. (5.11)

Under the null of no jump in the ith return, that the process belongs to the family of BSMFAJ

models described in Equation (3.6), and a suitable choice of the window size for local volatility,

yt,i

σ̂t,i
asymptotically follows a standard normal distribution.

Lee and Mykland (2008) recommend replacing σ̂t,i by ŝt =
√

1
M−1BVt where BVt is the bi-

power variation computed on all the intraday returns of day t. Boudt, Croux, and Laurent (2011b)

propose to account for the strong periodicity in volatility and show that replacing σ̂t,i by either

f̂WSD
t,i ŝt or f̂

TML
t,i ŝt is more appropriate. They show that ignoring periodic volatility patterns leads

to spurious jump identification. Indeed, the original Lee/Mykland statistic, which neglects the

periodicity, tends to overdetect (underdetect) jumps in periods of high (low) intraday periodic

volatility.

Under the null of no jump and a consistent estimate σ̂t,i, Jt,i follows the same distribution as

the absolute value of a standard normal variable. Brownlees and Gallo (2006) propose comparing

Jt,i with the 1 − α/2 quantile of the standard normal distribution. This rule might spuriously

detect many jumps, however. Andersen, Bollerslev, and Dobrev (2007) use a Bonferroni correction

to minimize spurious jump detection. To minimize the risk of falsely finding jumps, Lee and

Mykland (2008) propose inferring jumps from a conservative critical value, which they obtain from

the distribution of the statistic’s maximum over the sample size. If the statistic exceeds a plausible

maximum, one rejects the null of no jump. Under the stated assumptions and no jump in the

interval i − 1, i of day t, then when ∆ → 0, the sample maximum of the absolute value of a
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standard normal variable (that is the jump statistic Jt,i) follows a Gumbel distribution. We reject

the null of no jump if

Jt,i > G−1(1− α)Sn + Cn, (5.12)

where G−1(1 − α) is the 1 − α quantile function of the standard Gumbel distribution, Cn =

(2 log n)0.5 − log(π)+log(logn)
2(2 logn)0.5 and Sn = 1

(2 logn)0.5 . When n = 1, the test is similar to the one

of Brownlees and Gallo (2006) in the sense that the expected number of spurious detected jumps

(under the null) can be extremely large, that is αMT . When n =M (that is number of observations

per day) and n =MT (that is total number of observations), this number equals respectively αT

and α (that is ≈ 0). So if we choose a significance level of α = 0.0001, then we reject the null of

no jump at testing time if Jt,i > Snβ
∗ +Cn with β∗ such that P (ψ ≤ β∗) = exp(−e−β∗

) = 0.9999,

that is β∗ = −log(−log(0.9999)) = 9.21.

Lee and Hannig (2010) propose a method to decompose jump risk into big jump risk and small

jump risk. To identify big jump arrivals, they propose using the following statistic:

JLH
t,i =

|yt,i|
σ̂t,i

, (5.13)

where σ̂t,i is now replaced by ŝt =
√

1
M−1TVt, where TVt is the truncated power variation given

in Equation (3.16), and computed on all the intraday returns of day t. The test detects the arrival

times of the big jumps when data follows a BSMIAJ model as in Equation (3.15).21 The detection

method for the big jumps is same as the Lee and Mykland test, and thus given by the rule (5.12).

[ Insert Figure 10 about here ]

Like the Lee/Mykland statistic, JLH
t,i neglects periodic volatility. To account for such cyclical

patterns in volatility, one can replace σ̂t,i by f̂t,iŝt, which is a periodicity-robust volatility mea-

sure. Indeed, the left-block graphs of Figure 10 show that ignoring periodicity leads to spurious

jump identification.22 Like the Lee/Mykland test, the original Lee/Hannig test (without period-

icity filtration) tends to overdetect (underdetect) jumps in periods of high (low) intraday periodic

volatility. The figure also suggests that filtered Lee/Hannig test (by either f̂WSD
t,i ŝt or f̂TML

t,i ŝt)

leads to a more uniform distribution of the number of spurious jumps over a day (see middle and

right-block graphs in Figure 10).

Application

This section applies the daily and intradaily jump tests described in the previous sections to 5-

minute returns.
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[ Insert Table 7 and Figure 11 about here ]

Table 7 reports the number of detected daily jumps and their proportions to all sample days.

The table clearly shows the presence of jumps in the exchange rates. The tests using BVt,MinRVt

and MedRVt as integrated volatility measures detect about 300-400 daily jumps. Furthermore,

Figure 11 illustrates the time series of these detected jumps. Jumps occur more frequently during

the financial crisis period, 2007-2009, particularly for the USD/JPY exchange rate.

[ Insert Table 8 and Figure 12 about here ]

We now turn our attention to intraday jumps. Table 8 reports the results of the Lee/Mykland-

test and the Lee/Hannig-test, as well as their periodicity-free versions. The table indicates that

there are about 2000 intraday jumps detected in both exchange rates. Nevertheless, the intraday

jumps do not occur very often. For instance, the likelihood of observing an intraday return as a

jump (that is p(jumps) in the second column) is less than 1 per cent in general.

How does periodicity in volatility affect intraday jump identification? Figure 12 plots the

number of jumps per intraday interval. The fact that the filtered and unfiltered tests detect different

returns as jumps (see the right and left-block graphs in Figure 12) suggests that one should account

for intraday periodicity in jumps. The unfiltered tests tend to underdetect jumps at times of low

periodicity and overdetect jumps at high periodicity times, in line with our simulation results.

Accounting for periodicity leads to a more uniform distribution for intraday jump occurrences (see

right-block graphs in Figure 12).

Section 6

Macro news and central bank

interventions

Because asset prices react to news about discount rates or future earnings, researchers have long

recognized that announcements affect foreign exchange volatility. Scheduled announcements can

help explain two important properties of foreign exchange volatility: periodicity and discontinuities

in prices.
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The study of announcement effects on volatility grew out of an earlier literature on autocor-

relation, intraday and intraweek patterns in volatility. Researchers sought to distinguish patterns

caused by market opening/closing from those caused by regular macro announcements. Links be-

tween announcements and volatility have implications for policy: a strong relation between volatil-

ity and news argues against taxing foreign exchange transactions to reduce allegedly meaningless

churning that creates “excess” volatility (Melvin and Yin, 2000). Recent research has clearly linked

macro announcements to price discontinuities (jumps), which have implications for volatility fore-

casting (Neely, 1999 and Andersen, Bollerslev, and Diebold, 2007). Finally, microstructure theory

has motivated studies that show that the prolonged impact of news announcements on volatility

occurs through the persistent release of private information through order flow.

Research methods

The literature has devoted disproportionate attention to U.S. announcements because U.S. an-

nouncements are scheduled and expectations of those announcements and accompanying exchange

rate data have been widely available for a long time.23 Tables 9 and 10 show commonly used U.S.

announcements, their source and the delay in their release.

[ Insert Tables 9 and 10 about here ]

Researchers have commonly used three measures of volatility to study announcement effects:

implied volatility, realized volatility and variants of GARCH models (Engle, 1982, and Bollerslev,

1986).24 Implied volatility is strongly forward looking and often insensitive to short-lived volatility

effects from macro announcements. GARCH models fitted to daily data predict daily volatility

through essentially autoregressive processes, but such models cannot estimate intraday effects. In

contrast, high-frequency data—which can be used with parametric models such as GARCH—are

well suited to measuring short-lived, intraday effects.

Researchers also study the extent to which a scheduled announcement itself—rather than the

surprise component—could be expected to change volatility. To separate the effects of the an-

nouncement itself from the effects of the surprise component, researchers generally estimate the

expectation of the announcement with the median response from the Money Market Services

(MMS) Friday survey of 40 money managers on their expectations of coming economic releases.25

Grossman (1981), Engel and Frankel (1984), Pearce and Roley (1985), and McQueen and Roley

(1993) showed that the MMS survey data provide approximately unbiased and informationally

efficient estimates of news announcements that outperform time series models.26

To compare coefficients on announcement surprise series with different magnitudes, researchers

have typically followed Balduzzi, Elton, and Green (2001) in standardizing surprises by subtracting
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the MMS expectation from the release and dividing those differences by the SD of the series of

differences. For example, the standardized surprise for announcement j is as follows:

Sj
t =

Rj
t − Ej

t

σ̂j
, (6.1)

where Rj
t is the realization of announcement j at day t, Ej

t is the MMS market expectation, and

σ̂j is the estimated SD of the series of the differences. Thus, announcement surprises are close to

mean zero and have a unit SD.

Early study of volatility patterns

Early studies of volatility patterns by Engle, Ito, and Lin (1990) and Harvey and Huang (1991)

motivated specific study of announcement effects on volatility, despite the fact that the latter paper

did not explicitly incorporate macro announcements.

Harvey and Huang (1991) discover an intraday U-shaped volatility pattern in hourly foreign

exchange returns as well as intraweek effects. The authors speculate that important news an-

nouncements at the end of the week raise volatility on Thursday and Friday. Volatility is highest

during the traded currency’s own domestic business hours, particularly so for non-USD (United

States dollar) cross rates. Engle, Ito, and Lin (1990) extend this research in intraday volatility

patterns by introducing the concepts of heat waves and meteor showers in the foreign exchange

market. Heat waves refer to the idea that volatility is geographically determined—that is, a heat

wave might raise volatility in New York on Monday and Tuesday but not in London on Tuesday

morning. Heat waves might occur if most or all important news that affects volatility occurs during

a particular country’s business day and there is little price discovery when that country’s markets

are closed. In contrast, meteor showers refer to the tendency of volatility to spill over from market

to market, from Asian to European to North American markets, for example. Therefore, meteor

showers imply volatility clusters in time, not by geography. Using a GARCH model with intraday

data, Engle, Ito, and Lin (1990) find that the meteor shower hypothesis better characterizes foreign

exchange volatility engendered by balance of trade announcements. Baillie and Bollerslev (1991)

confirm the meteor shower effect but also find some evidence of heat wave behavior. In retrospect,

it seems unsurprising that meteor showers should predominate over heat waves in a world of global

trading and a high degree of autocorrelated common shocks across countries: News tends to cluster

in time and will surely affect volatility across the globe.
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Decomposing announcements and periodic volatility patterns

Ederington and Lee (1993, 1994, and 1995) argued that announcements explain most of the daily

and intraweek volatility patterns, leaving little residual explained by a periodic pattern. Because

announcements and periodicity are correlated, however, one must jointly model them to consis-

tently estimate and compare their impact (Payne, 1996 and Andersen and Bollerslev, 1998b). In

doing so, Andersen and Bollerslev (1998b) affirm the importance of macro releases as addressed by

Ederington and Lee (1993), but argue that these are secondary to the intraday pattern; periodic

patterns and autoregressive volatility forecasts explain more of intraday and daily volatility than

do announcements. The debate on the relative importance of announcement versus periodic effects

continued in Han, Kling, and Sell (1999) and Ederington and Lee (2001).

Announcements and intraday patterns are not the whole story, however, Andersen and Boller-

slev (1998b) find that—after accounting for the intraday volatility pattern—including ARCH terms

still significantly improves forecasting power, even in a high-frequency volatility process.

To illustrate the issues involved in disentangling announcements, other periodic effects and

autocorrelation, one can regress absolute hourly foreign exchange returns—24 hours a day, 5 days

a week—on announcement variables and periodic components. The following equation describes

such a regression for hourly returns:

log(|yt,i|/ŝt,i)− c = α0 + β
(US)
0 D

(US)
t,i + β

(For)
1 D

(For)
t,i +

N
∑

j=1

β2,j |Surprise
(j)
t,i |+

4
∑

q=1

β3,q cos

(

i2πq

24

)

+
4

∑

q=1

β4,(4+q) sin

(

i2πq

24

)

+
5

∑

l=1

β5,l|yt,i−1|+
23
∑

h=19

β6,hD
(Fridayh)
t,i + εt,i,

(6.2)

where log(|yt,i|/ŝt,i) is the standardized log return (annualized) from period i to i + 1; c is as

defined in Section 4; D
(US)
t,i and D

(For)
t,i are dummy variables that take the value 1 if there is

any U.S. or foreign announcement, respectively, during i to i+ 1, and 0 otherwise; Surprise
(j)
t,i is

the standardized surprise of announcement j at period i on day t; cos
(
i2πq
24

)
and sin

(
i2πq
24

)
are

trigonometric functions that allow parsimonious estimation of an intraday periodic component.27

Finally, D
(Fridayh)
t,i takes the value 1 if the observation i coincides with hour h of a Friday, and 0

otherwise.

We estimate Equation (6.2) by ordinary least squares on 1-hour log changes in the EUR/USD

exchange rate over the period 5 November 2001 to 12 March 2010, after first removing weekends

and the following holidays from the sample: New Year’s Day (December 31 - January 2), Good

Friday, Easter Monday, Memorial Day, Fourth of July (July 3 or 5 when the Fourth falls on a

Saturday or Sunday), Labor Day, Thanksgiving (and the Friday after), and Christmas (December

24 - 26). We use daily annualized GARCH (1, 1) volatility (that is σt), and also RVt to estimate
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st,i for Equation (6.2).

[ Insert Table 11 about here ]

Table 11 shows the relative explanatory power of the various components of Equation (6.2) for

absolute returns. When we use RVt to compute endogenous variable (that is SYSTEM-II), the

full regression has a substantial R2 of 0.1828, with the greatest explanatory power coming from

lagged absolute returns, with a partial R2 of 0.0644, and the intraday periodicity (0.0457). The

announcement dummies provide a very low partial R2 of 0.0002 and the absolute announcement

surprises provide a statistic of only 0.0044. Thus, the announcement surprises are fairly important

but not as important as some other features of the data, confirming the views of Andersen and

Bollerslev (1998b).

[ Insert Tables 12 and 13 about here ]

Tables 12 and 13 show the estimated regression coefficients and the robust t-statistics from

Equation (6.2). Most—but not all—of the news surprise coefficients are positive, indicating that

larger surprises increase volatility. Some of the news surprise coefficients are perverse (negative),

which often results from their correlation with the periodic components and/or the announcement

indicators. Of all the German/euro announcements, German real GDP growth, Euro area producer

price index, and Euro area industrial production indicators are significant and positive (see the

columns of SYSTEM-II). Germany preliminary cost of living indicator is slightly significant and

negative. The U.S. announcement indicator is significant, whereas the German/euro indicator is

essentially zero—that is, U.S. announcements raise volatility but German announcements do not.

The significance of the U.S. announcement indicator confirms the results of Andersen, Bollerslev,

Diebold, and Vega (2003), who use high-frequency (5-minute) data from 1992 through 1998 to

study the effects of a large set of U.S. and German announcements on the conditional mean and the

conditional volatility of DEM/USD, USD/GBP (British pound sterling), JPY/USD, CHF (Swiss

franc)/USD, and USD/EUR (euro) exchange rates. The authors find that both the magnitude of

the surprise and the pure announcement effect are significant.

In summary, the results in Table 11 indicate that Andersen and Bollerslev (1998b) were correct

to argue that announcements are important explanatory variables for volatility, though not as

important as intraday periodicity. Likewise, Tables 12 and 13 confirm the findings of Ederington

and Lee (1993) that U.S. nonfarm payroll and U.S. trade balance surprises are among the most

important for volatility.
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Volatility and news arrival

Although the first studies of news volatility effects used U.S. news reports and USD exchange rates,

later studies branched out to study the effect of foreign news and broader definitions of news. Most

such work has found that U.S. news has stronger effects on foreign exchange volatility than does

foreign news (Cai, Joo, and Zhang, 2009; Evans and Speight, 2010; Harada and Watanabe, 2009).

Not all news consists of macro announcements. Information about the international economy

and politics arrives continuously in financial markets via newswire reports. Although most papers

documenting the impact of information arrival measure that variable by the frequency of headlines

from wire service news agencies, DeGennaro and Shrieves (1997) use unexpected quote arrival

instead. The most common theme in this literature is that information arrival typically increases

volatility (DeGennaro and Shrieves, 1997; Eddelbüttel and McCurdy, 1998; Joines, Kendall, and

Kretzmer, 1998; Melvin and Yin, 2000; Chang and Taylor, 2003). Melvin and Yin (2000) interpret

this result as casting doubt on proposals to apply “sand-in-the-wheels” transaction taxes that

would reduce allegedly self-generated foreign exchange volatility.

Although news arrival usually boosts volatility, DeGennaro and Shrieves (1997) find that un-

scheduled announcements actually reduce volatility for 20 minutes, perhaps inducing traders to

pause to consider unexpected information.

Eddelbüttel and McCurdy (1998) confirm that use of Reuters’ news headlines as a proxy for

news arrival renders the GARCH-implied variance process much less persistent. This fact appears

to confirm the intuitively attractive proposition that persistence in news arrival drives part of the

volatility persistence captured by GARCH models. The literature also shows, however, that public

information arrival cannot explain the entire increase in volatility.

Joines, Kendall, and Kretzmer (1998) and Chang and Taylor (2003) argue that trading must

also release private information that hikes volatility. Researchers working with order flow data

would further explore this point.

Announcements and jumps

Researchers have long noted that asset prices display jumps or discontinuities. Such jumps are con-

sistent with the efficient markets hypothesis, which predicts very rapid systematic price reactions

to news surprises to prevent risk-adjusted profit opportunities. Jumps and time-varying diffusion

volatility have different implications for modeling, forecasting, and hedging and therefore jumps

should be identified and distinguished. For example, persistent time-varying diffusion volatility

would help forecast future volatility, while jumps might contain no predictive information or even

distort volatility forecasts (Neely, 1999 and Andersen, Bollerslev, and Diebold, 2007). Therefore,
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it makes sense to investigate the effect of announcements on jumps.

Goodhart, Hall, Henry, and Pesaran (1993) first suggested the importance of accounting for

news-induced discontinuities in exchange rates. The authors claim that including news indicators

in the conditional mean and variance equations of a GARCH-in-mean (GARCH-M) model renders

both of these processes stationary (Perron, 1990). The short (3-month) span of their data would

seem to preclude useful inference about the degree of persistence in the processes.

To link daily jumps in the JPY, GBP, and DEM exchange rates to four announcements from

U.S., British, German, and Japanese sources, Johnson and Schneeweis (1994) introduce an an-

nouncement effect parameter to Jorion’s (1988) jump-diffusion model, permitting the conditional

variance to depend on an announcement indicator. Real announcements—U.S. trade balance and

industrial production news—cause larger volatility movements than do money supply and inflation

news and U.S. news influences currency market variance more than does foreign news. Using data

from 1982 to 2000, Fair (2003) relates the largest changes in U.S. foreign exchange (and stock and

bond) futures tick prices to changes to monetary, price level, employment, and trade balance news.

Advances in econometric jump modeling enabled later researchers to better examine the relation

between announcements and jumps. Barndorff-Nielsen and Shephard (2004) used their method of

bipower variation to pinpoint jump dates and to observe that they often correspond to days of

macroeconomic releases, which is consistent with Andersen, Bollerslev, Diebold, and Vega (2003)

and Andersen, Bollerslev, Diebold, and Vega (2007) (see for example Equations (5.9) and(5.10)).28

The Barndorff-Nielsen and Shephard (2004) bipower procedure estimates the sum of jumps

during a period, usually a day but does not pin down the precise times of those jumps, which

precludes linking jumps to specific news releases. Lahaye, Laurent, and Neely (2011) use the

Lee and Mykland (2008) technique—which more precisely identifies jump times and sizes—to

determine that U.S. macro announcements explain jumps and cojumps—simultaneous jumps in

multiple markets—across equity, bond, and foreign exchange markets. Nonfarm payroll and federal

funds target announcements are the most important news across asset classes, while trade balance

shocks are also important for foreign exchange jumps (see Equation (5.11)).

[ Insert Figure 13 about here ]

Figure 13 illustrates the intraday frequency and size of jumps in the USD/EUR market (Lahaye,

Laurent, and Neely, 2011). Exchange rate jumps are more frequent around the times of major

U.S. macro news announcements, at 8:30 a.m., and during periods of low liquidity, that is, the gap

between the U.S. and the Asian business day, 4 p.m. to 8 p.m., and the Tokyo lunch, 10 p.m. to

2 a.m. U.S. ET.

[ Insert Tables 14 and 15 about here ]
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Lahaye, Laurent, and Neely (2011) use tobit-GARCH and probit models to formally confirm the

relation between U.S. news and a variety of asset price jumps and cojumps, respectively. Table 14

shows that the tobit-GARCH results: nonfarm payroll (NFP), federal funds target announcements,

trade balance reports, preliminary GDP, government fiscal announcements, and consumer confi-

dence surprises explain to foreign exchange jumps. Table 15 likewise shows that a probit model

consistently and strongly links cojumps to macro surprises, such as those to the federal funds rate

target, NFP, and preliminary GDP. Federal funds target surprises significantly explain cojumps in

every currency pair.

Order flows and foreign exchange volatility

News might create order flows—signed transaction flows—that transmit private information to

the foreign exchange market. Private agents combine public news releases with their own private

information, and their publicly observable decisions may convey that private information. For ex-

ample, a business might revise its estimates of future demand from a positive industrial production

surprise and decide to build a new plant—but only if the firm’s privately known cost structures

would make it expect to profit from that decision. The release of private information creates a

channel by which news can affect volatility over a prolonged period.

Obtaining order flow data is difficult and/or expensive, prompting some researchers to use

proxies for order flow, while others have used relative short spans from electronic brokers such as

Reuters D2000-1 or Electronic Brokerage Services or proprietary datasets from commercial banks.

The limited length and market coverage of order flow data has hindered clear inference about the

effect of specific announcements on order flow.

The main finding from the literature on order flow and announcements is that news releases

public information, which immediately affects prices and volatility and—after a delay—volume

through release of private information through order flow (Evans and Lyons, 2005). The delayed

effects of order flow can contribute to volatility for hours after announcements, particularly if the

announcement is important and unscheduled, as in Carlson and Lo (2006).

Berger, Chaboud, and Hjalmarsson (2009) conclude that both persistence in order flow and

persistence in sensitivity to that order flow contribute to the persistence of volatility. In other

words, the type of order flow matters for volatility transmission: Financial customers are thought

to be “informed traders,” to have better information on asset prices than commercial firms, which

trade currency to import/export. Frömmel, Mende, and Menkhoff (2008) find that only order

flow from banks and financial customers (that is, informed order flow) is linked to higher foreign

exchange volatility.29 Savaser (2011) finds that informed traders substantially increase their use
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of limit orders prior to news releases and that accounting for this surge substantially improves the

ability to explain exchange rate jumps that follow news.

Summary

The research on announcements and volatility highlights the role of announcements in contributing

to two of the main characteristics of volatility: periodicity and jumps. Trading and volatility

typically increase for about an hour after certain announcements: nonfarm payrolls, trade balance,

advance GDP, and interest rate changes (Ederington and Lee, 1993).

Early researchers disentangled the contributions of macroeconomic news from those of other

periodic market effects—such as market openings and closings, showing that both had significant

effects on volatility (Payne, 1996 and Andersen and Bollerslev, 1998b). Further studies showed

that news flow (that is, headline counts) influence volume and volatility (Ederington and Lee, 2001;

Melvin and Yin, 2000; Chang and Taylor, 2003). More generally, researchers have established that

news has a prolonged effect on order flow, which channels private information to market prices

and produces sustained increases in volatility (Cai, Cheung, Lee, and Melvin, 2001; Evans, 2002;

Evans and Lyons, 2005; Frömmel, Mende, and Menkhoff, 2008).

The development of better tests for price discontinuities has aided more recent studies to connect

jumps to macro announcements and other news (Goodhart, Hall, Henry, and Pesaran, 1993; Fair,

2003; Andersen, Bollerslev, Diebold, and Vega, 2003; Lahaye, Laurent, and Neely, 2011). Removing

such jumps from the volatility process improves autoregressive volatility forecasts (Neely, 1999 and

Andersen, Bollerslev, and Diebold, 2007).

Central Bank Intervention, Foreign Exchange Volatility and

Jumps

Foreign exchange intervention is the practice by monetary authorities or finance ministries of

buying or selling foreign currency to influence exchange rates. From 1985 through 2004, the U.S.,

Japanese and German (European) central banks intervened more than 600 times—about 3 times

per month, on average—in either the DEM-dollar (DEM/USD or EUR/USD after the introduction

of the euro) or the yen-dollar (JPY/USD) market.30

The importance of foreign exchange markets for international trade and finance makes it un-

surprising that central banks should frequently intervene in markets that are of crucial importance

for international trade and finance. Specifically, central banks often motivate intervention with a

desire to respond to “disorderly markets,” an ill-defined term that could include excess volatility.
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The International Monetary Fund’s (IMF) document: “Surveillance over Exchange Rate Policies,”

for example, states that “A member should intervene in the exchange market if necessary to counter

disorderly conditions, which may be characterized inter alia by disruptive short-term movements in

the exchange value of its currency.”31 In practice, authorities have often referred to market volatil-

ity in justifying intervention: On 17 March 2011, for example, the G-7 announced a coordinated

intervention to sell the yen in response to unwanted appreciation after the Japanese earthquake of

the previous week. The G-7 press release contained the following text:

“[A]t the request of the Japanese authorities, the authorities of the United States, the

United Kingdom, Canada, and the European Central Bank will join with Japan, on 18

March 2011, in concerted intervention in exchange markets. As we have long stated,

excess volatility and disorderly movements in exchange rates have adverse implications

for economic and financial stability. (G-7, 2011).”

Foreign exchange intervention is a type of unscheduled news; market participants generally

quickly find out about such transactions. Many researchers have studied the relation between

intervention and foreign exchange volatility and, more recently, with jumps.

Although intervention is often motivated by a desire to counter volatility, research has usually

found that interventions generally increase foreign exchange volatility. This result is robust to

the use of any of the three main measures of asset price volatility: univariate GARCH models

(Baillie and Osterberg, 1997; Dominguez, 1998; Beine, Bénassy-Quéré, and Lecourt, 2002); implied

volatilities extracted from option prices (Bonser-Neal and Tanner, 1996; Dominguez, 1998; Galati

and Melick, 1999); and realized volatility (Beine, Laurent, and Palm, 2009; Dominguez, 2006).

Hung (1997) says that results could be sample dependent: Intervention reduced both JPY/USD

and DEM/USD volatilities during 1985-1986, but increased them during 1987-1989. Fratzscher

(2008) finds that oral—not actual—interventions tend to reduce exchange rate volatility. Using

bipower variation to determine days of jumps, Beine, Lahaye, Laurent, Neely, and Palm (2007)

likewise find that although jumps are not more likely to occur on days of intervention, the jumps

that do occur are larger than average. Their analysis strongly suggests that intervention normally

generates the jumps, rather than reacting to them. The only period in which intervention appears

to respond to jumps is that of the “Louvre Accords,” when central banks were very keen to dampen

volatility by leaning against the wind. In addition, coordinated operations statistically explain an

increase in the persistent (continuous) part of exchange rate volatility. This correlation is even

stronger on days with jumps.

While most studies find that intervention raises uncertainty, the literature is not unanimous on

this point. Failure to correctly resolve the difficult issues of simultaneity/identification of the cross-

effects of volatility and intervention might explain the finding that intervention raises volatility.
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That is, intervention responds to volatility, so these variables will be positively correlated. Volatility

does tend to decline in the hours and days following intervention, but it is difficult to ascertain

whether the decline is the result of intervention or simply the natural tendency of very volatile

markets to return to normal volatility levels over time. That is, Figure 14, excerpted from Neely

(2011), shows that both realized and implied volatility drop remarkably after the March 18, 2011

G-7 intervention. After the intervention, short-horizon implied volatility dropped much more than

long-horizon volatility, which suggests that the unexpected intervention did calm markets.

[ Insert Figure 14 about here ]

Although high frequency data or more sophisticated econometric techniques might account

for simultaneity, another method would be to ask market participants—who observe very high

frequency data—about the effect of intervention on volatility. Cheung and Clement (2000) report

that traders believe that intervention increases volatility, though they also believe that it helps

restore equilibrium. Neely (2008) reports that central bankers who are directly involved with

intervention generally do not believe that it raises volatility.

In summary, intervention and volatility are clearly correlated. The effect of intervention on

volatility likely depends on the intervention reaction function and market conditions at the time

of intervention.

Section 7

Conclusion

This chapter reviewed the recent developments in modeling exchange rate volatility and jumps.

Volatility models of foreign exchange inform a variety of agents, including academic researchers,

policymakers, regulators, and traders. A good volatility model fits the three characteristics of

volatility: intraday periodicity, autocorrelation and allowance for discontinuities in prices.

Early research focused on ARCH/GARCH modeling of the autocorrelation in daily and weekly

squared residuals. We show that a FIGARCH model with a fat-tailed distribution describes daily

exchange rate volatility dynamics quite well. Researchers soon discovered the value of high fre-

quency data for better volatility and jump estimation, however. Using high-frequency exchange
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rate data, we presented several methods to estimate the quadratic variation, integrated volatility,

jumps and intraday periodicity in a continuous-time framework. In doing so, we illustrate the

prevalence of jumps in the data and show that one must account for intraday periodicity in de-

tecting jumps. We concluded our chapter by discussing the effects of macro news announcements

and central bank interventions on exchange rate volatility and jump dynamics. Macro news affects

volatility but not as much as periodicity caused by market openings and closings. The effect of

interventions on volatility depends on market conditions.

More recently, researchers have investigated the impact of central bank communication on

exchange rates. Does communication calm foreign exchange markets? How and when do markets

process communication news? A future research may shed more light on these issues.

Notes

1We splice DEM/USD returns with EUR/USD returns on 1 January 1999, and call the resulting series EUR/USD

for simplicity.

2These holidays include New Year (December 31 - January 2), Martin Luther King Day, Washington’s Birthday

or Presidents’ Day, Good Friday, Easter Monday, Memorial Day, Independence Day, Labor Day, Thanksgiving Day

and Christmas (December 24 - 26).

3See also Table 1.

4The weakness of the Ljung-Box test is that its asymptotic distribution is known under the very restrictive

assumption that errors are i.i.d. Francq, Roy, and Zaköıan (2005) propose a robust version of that test whose

distribution is derived under the weaker assumption of a martingale difference sequence. This test is therefore

robust to ARCH effects. See also Francq and Zaköıan (2009).

5For the sake of simplicity, we present the parametric volatility models for the daily frequency only.

6However, these conditions are not necessary as shown by Nelson and Cao (1992).

7Researchers have proposed other specifications accounting for this leverage effect. See the EGARCH of Nelson

(1991), the TARCH of Zaköıan (1994) and the APARCH of Ding, Granger, and Engle (1993), among others.

8Nevertheless, some empirical studies do find evidence of asymmetry for some exchange rates (Oh and Lee, 2004

and McKenzie and Mitchell, 2002).

9Granger (1980) and Granger and Joyeux (1980) initially developed the ARFIMA process to model long memory

in time series processes. An ARFIMA specification fills the gap between short and complete persistence, so that

the ARMA parameters capture the short-run behavior of the time-series and the fractional differencing parameter

models the long-run dependence. Baillie (1996) surveys this topic. ARFIMA models have been combined with an

ARCH-type specification by Baillie, Chung, and Tieslau (1996), Tschernig (1995), Teyssière (1997), Lecourt (2000)

and Beine, Laurent, and Lecourt (2002). However, among these studies, Tschernig (1995), Beine, Laurent, and

Lecourt (2002) find evidence of only weak long-memory in the conditional mean of some exchange rate returns. To

check this result using our dataset, we estimated an ARFIMA(1, d, 1) model for the EUR/USD exchange rate. We

found that the long-memory parameter d in the conditional mean equation is not statistically different from zero,

which is consistent with the main body of the literature. For brevity, we do not report these results but they are

available upon request.

10Conrad and Haag (2006) further derive necessary and sufficient positivity constraints for FIGARCH models.
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11We first estimated an ARFIMA-GARCH model to test for the long-memory in the conditional mean. We did

not find any evidence of long-range dependence and therefore only reported short-memory models for the conditional

mean.

12The Student-t and GED distribution are not nested and hence one cannot rely a standard likelihood ratio test

to discriminate between the two distributions.

13For brevity, these results are not reported yet they are available upon request. Note that pre-crisis sample covers

the periods 2004-01-05 to 2006-12-29, and the crisis sample spans 2007-01-03 to 2009-12-30.

14The origin of realized volatility is not as recent as it would seem at first sight. Merton (1980) already mentioned

that, provided data sampled at a high frequency are available, the sum of squared realizations can be used to

estimate the variance of an i.i.d. random variable.

15In other words, a counting process (such as Poisson process) is defined to be of finite activity if the change in

the counting process over any time interval is finite with probability one.

16Even in absence of jumps, some squared returns are down-weighted and therefore cw>1 is intended to compen-

sate for this, to make the weighted sum of squared returns consistently estimate IVt.

17The length of the local window is usually set to one day.

18We discuss the periodicity estimations methods in Section 4.

19One can also compare the non-parametric volatility estimators based on their volatility forecasting performance.

One candidate model is an ARFIMA. As an alternative to ARFIMA model, Corsi (2009) proposed a simple AR-type

model that considers volatilities realized over different horizons (typically three, that is daily, weekly and monthly).

This model is called Heterogeneous Auto-Regressive (HAR) model.

20Note that it is standard practice to normalize the integral of the periodicity factor (or its square) to equal one

over the day.

21Lee and Hannig (2010) also propose a detection rule to identify small jumps in the data. In our study, we only

focus on the big jump detection test.

22Unreported simulation results. The underlying DGP is a continuous-time GARCH model. There are no jumps

in the process. These results are available upon request.

23MMS expectations have been available for other countries for some time.

24Neely (2005) discusses the measurement and uses of implied volatility estimated from options prices. Engle

(1982) developed the autoregressive conditionally heteroskedastic (ARCH) model that Bollerslev (1986) extended to

the GARCH formulation. GARCH models usefully account for the time-varying volatility and fat-tailed distributions

of daily and intraday financial returns.

25The number of survey participants and the dates of the survey have changed over time. Hakkio and Pearce

(1985) report that MMS surveyed about 60 money market participants during the early 1980s. MMS conducted the

surveys on both Tuesdays and Thursdays before February 8, 1980 and on Tuesday after that date.

26Rigobon and Sack (2008) discuss two methods to compensate for the error inherent in estimating market

expectations with survey data. Bartolini, Goldberg, and Sacarny (2008) apply this methodology.

27Equation (6.2) could be altered to take into account a host of effects, including asymmetry or business cycle

dependence, for example.

28Beine, Lahaye, Laurent, Neely, and Palm (2007) use macro announcements as control variables in a study

of the effects of U.S., German, and Japanese foreign exchange intervention on the continuous and discontinuous

components of DEM-EUR/USD and JPY/USD exchange rate volatility. They estimate exchange rate jumps with

bipower variation.

29Informed order flow would be order flow that is generated by private information and speculates on a change in

asset prices. In contrast, uninformed order flow would be generated by demands for commercial or hedging purposes
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and would not be predicated on private information that informs expectations of changes in asset prices.

30The central banks of major economies have tended to intervene far less frequently since 1995. See Savaser

(2011).

31See http://www.imf.org/external/pubs/ft/sd/2011/123110.pdf.
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Journal of Financial Economics, 96, 271–290.

Lee, S. S., and P. A. Mykland (2008): “Jumps in Financial Markets: A New Nonparametric

Test and Jump Dynamics,” Review of Financial Studies, 21, 2535–2563.

46



Mancini, C. (2009): “Non-parametric Threshold Estimation for Models with Stochastic Diffusion

Coefficient and Jumps,” Scandinavian Journal of Statistics, 36, 270–296.

Marazzi, A., and V. J. Yohai (2004): “Adaptively Truncated Maximum Likelihood Regression

with Asymmetric Errors,” Journal of Statistical Planning and Inference, 122, 271–291.

Maronna, R. A., D. R. Martin, and V. J. Yohai (2006): Robust Statistics: Theory and

Methods. Wiley.

McAleer, M., and M. C. Medeiros (2008): “Realized Volatility: A Review,” Econometric

Reviews, 27, 10–45.

McKenzie, M., and H. Mitchell (2002): “Generalized Asymmetric Power ARCH Modeling of

Exchange Rate Volatility,” Applied Financial Economics, 12(3), 555–564.

McQueen, G., and V. V. Roley (1993): “Stock-Prices, News, and Business Conditions,” Review

of Financial Studies, 6, 683–707.

Melvin, M., and X. Yin (2000): “Public Information Arrival, Exchange Rate Volatility, and

Quote Frequency,” Economic Journal, 110, 644–661.

Merton, R. C. (1980): “On Estimating the Expected Return on the Market. An Exploratory

Investigation,” Journal of Financial Economics, 8, 323–361.

Mittnik, S., and M. S. Paolella (2000): “Conditional Density and Value-at-Risk Prediction

of Asian Currency Exchange Rates,” Journal of Forecasting, 19, 313–333.

Neely, C. J. (1999): “Target Zones and Conditional Volatility: the Role of Realignments,”

Journal of Empirical Finance, 6, 177–192.

(2005): “Using Implied Volatility to Measure Uncertainty about Interest Rates,” Federal

Reserve Bank of St. Louis Review, 87, 407–425.

(2008): “Central Bank Authorities’ Beliefs About Foreign Exchange Intervention,” Jour-

nal of International Money and Finance, 27, 1–25.

(2011): “A Foreign Exchange Intervention in an Era of Restraint,” Federal Reserve Bank

of St. Louis Review, 93, 303–324.

Nelson, D. B. (1991): “Conditional Heteroskedasticity in Asset Returns: a New Approach,”

Econometrica, 59, 349–370.

Nelson, D. B., and C. Q. Cao (1992): “Inequality Constraints in the Univariate GARCH

Model,” Journal of Business and Economic Statistics, 10, 229–235.

47



Oh, S., and H. Lee (2004): “Foreign Exchange Exposures and Asymmetries of Exchange Rates:

Korean Economy is Highly Vulnerable to Exchange Rate Variations,” Journal of International

Financial Management, 17(1), 8–21.

Pagan, A. (1996): “The Econometrics of Financial Markets,” Journal of Empirical Finance, 3,

15–102.

Palm, F. C. (1996): “GARCH Models of Volatility,” in Handbook of Statistics, ed. by G. Maddala,

and C. Rao, pp. 209–240. Elsevier Science, Amsterdam.

Payne, R. (1996): “Announcement Effects and Seasonality in the Intra-Day Foreign Exchange

Market,” FMG Discussion Paper No. DP238, Financial Markets Group.

Pearce, D. K., and V. V. Roley (1985): “Stock Prices and Economic News,” Journal of

Business, 58, 49–67.

Perron, P. (1990): “Testing for a Unit Root in a Time Series with a Changing Mean,” Journal

of Business and Economic Statistics, 8, 153–162.

Rigobon, R., and B. Sack (2008): “Noisy Macroeconomic Announcements, Monetary Policy,

and Asset Prices,” in Asset Prices and Monetary Policy, ed. by J. Campbell, pp. 335–370.

University of Chicago Press.

Rousseeuw, P., and A. Leroy (1988): “A robust scale estimator based on the shortest half,”

Statistica Neerlandica, 42, 103–116.

Savaser, T. (2011): “Exchange Rate Response to Macro News: Through the Lens of Microstruc-

ture,” Journal of International Financial Markets, Institutions and Money, 21, 107–126.

Taylor, S. J., and X. Xu (1997): “The incremental volatility information in one million foreign

exchange quotations,” Journal of Empirical Finance, 4, 317–340.

Teyssière, G. (1997): “Double Long-Memory Financial Time Series,” Paper presented at the

ESEM, Toulouse.

Todorov, V., and G. Tauchen (2006): “Simulation Methods for Lévy-driven CARMA Stochas-
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APPENDIX: Tables and Figures

Table 1: Summary statistics for exchange rate returns

#Obs Mean Min Max Std Skew Kurt
5-min returns

EUR/USD 1070208 0.00 -1.43 2.79 0.04 0.49 59.85
USD/JPY 1071360 0.00 -2.89 1.98 0.05 -0.49 65.59

30-min returns
EUR/USD 178368 0.00 -2.28 2.64 0.10 0.16 23.95
USD/JPY 178560 0.00 -3.39 3.54 0.11 -0.19 41.34

1-hour returns
EUR/USD 89184 0.00 -2.36 2.19 0.14 0.08 17.00
USD/JPY 89280 0.00 -3.36 4.05 0.16 -0.30 30.64

daily returns

EUR/USD 3716 0.00 -3.59 3.53 0.66 0.03 4.89
USD/JPY 3720 0.00 -7.91 3.90 0.74 -0.62 9.36

weekly returns

EUR/USD 743 0.02 -6.72 8.60 1.47 0.14 5.54
USD/JPY 744 -0.01 -12.72 5.65 1.58 -0.99 9.25

monthly returns
EUR/USD 185 0.09 -10.71 10.63 3.06 0.08 4.06
USD/JPY 186 -0.04 -12.67 9.97 3.21 -0.42 4.06

Note: The sample covers the periods from 3 January 1995 to 30 December
2009.

Table 2: Time series properties and preliminary tests for exchange rate returns

#Obs JB Q(20) LB(20) Q2(20) LM(5) ADF (2)
5-min returns

EUR/USD 1070208 1.4× 108** 4311.82** 816.12** 24883.30** 2329.20** -625.59**
USD/JPY 1071360 1.7× 108** 5236.13** 627.58** 66991.10** 6405.30** -627.85**

30-min returns
EUR/USD 178368 3.3× 106** 127.32** 58.14** 6566.12** 692.48** -243.64**
USD/JPY 178560 1.1× 107** 285.11** 45.28** 30157.90** 2173.5** -245.09**

1-hour returns
EUR/USD 89184 7.3× 105** 44.27** 25.76 4082.98** 354.94** -173.06**
USD/JPY 89280 2.8× 106** 156.52** 42.39** 20007.80** 1846.90** -176.52**

daily returns

EUR/USD 3716 554.67** 23.65 16.50 778.59** 24.14** -35.93**
USD/JPY 3720 6517.3** 43.64** 28.73 356.83** 21.41** -35.63**

weekly returns

EUR/USD 743 202.55** 22.98 17.39 165.81** 6.68** -14.85**
USD/JPY 744 1329.80** 23.67 16.99 43.37** 3.51** -14.94**

monthly returns

EUR/USD 185 8.93** 19.25 15.02 39.21** 4.84** -7.32**
USD/JPY 186 13.99** 21.67 14.96 21.91 3.32** -7.55**

Note: The sample covers the periods from 3 January 1995 to 30 December 2009. #Obs corresponds to
the total number of observations. JB is the statistic of the Jarque-Bera normality test. Q(20) and Q2(20)
correspond respectively to the Box-Pierce test of serial correlation in the raw and squared returns with
20 lags. LB(20) is the robust Ljung-Box statistic on raw returns with 20 lags and LM(5) is the statistic
of the ARCH-LM test for 5 lags. ADF (2) denotes the Augmented Dickey-Fuller unit root test statistics
with two lags, without intercept and time trend. Davidson and MacKinnon (1993) provide asymptotic
critical values for the ADF tests. **: Indicates significance at the 1% level.
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Table 3: Estimation results of parametric volatility models for daily EUR/USD returns

ARCH GARCH GJR FIGARCH FIGARCH-t FIGARCH-St FIGARCH-GED
µ 0.002 0.009 0.009 0.008 0.006 0.008 0.005

(0.010) (0.010) (0.010) (0.010) (0.009) (0.010) (0.009)
ω 0.392 0.002 0.002 0.001 0.001 0.001 0.001

(0.015) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
α1 0.087 0.030 0.030 . . . .

(0.026) (0.004) (0.006) . . . .
β1 . 0.966 0.966 0.944 0.943 0.943 0.944

. (0.004) (0.004) (0.016) (0.013) (0.013) (0.014)
γ1 . . -0.001 . . . .

. . (0.008) . . . .
d . . . 0.883 0.902 0.905 0.896

. . . (0.056) (0.044) (0.044) (0.048)
φ1 . . . 0.074 0.042 0.040 0.055

. . . (0.048) (0.037) (0.037) (0.041)
υ . . . . 8.406 8.412 1.464

. . . . (1.132) (1.133) (0.053)
log(ξ) . . . . . 0.018 .

. . . . . (0.021) .

log-l -3684.11 -3488.06 -3488.05 -3485.57 -3444.75 -3444.42 -3441.84
Q(20) 22.64 20.24 20.20 20.03 19.99 19.98 20.03
Q2(20) 524.15** 20.03 20.14 14.47 15.39 15.44 14.71

Note: Parameter estimation of ARCH (1), GARCH (1, 1), GJR (1, 1) and FIGARCH (1, d, 1) models. Robust
standard errors are reported in parenthesis. The first four models are estimated by quasi-maximum likelihood.
A Student-t, skewed Student-t and GED distribution is chosen respectively for the last three models. Q(20) and
Q2(20) correspond respectively to the Box-Pierce statistics on standardized and squared standardized residuals
with 20 lags. **: Indicates significance at the 1% level.

Table 4: Estimation results of parametric volatility models for daily USD/JPY returns

ARCH GARCH GJR FIGARCH FIGARCH-t FIGARCH-St FIGARCH-GED
µ 0.009 0.006 0.002 0.009 0.019 0.009 0.016

(0.012) (0.011) (0.011) (0.011) (0.010) (0.011) (0.010)
ω 0.442 0.005 0.006 0.021 0.030 0.029 0.026

(0.021) (0.002) (0.003) (0.010) (0.012) (0.012) (0.011)
α1 0.197 0.042 0.031 . . . .

(0.046) (0.011) (0.010) . . . .
β1 . 0.950 0.948 0.686 0.583 0.591 0.608

. (0.013) (0.016) (0.098) (0.092) (0.087) (0.094)
γ1 . . 0.019 . . . .

. . (0.013) . . . .
d . . . 0.342 0.337 0.333 0.328

. . . (0.067) (0.066) (0.064) (0.060)
φ1 . . . 0.453 0.301 0.313 0.355

. . . (0.104) (0.068) (0.066) (0.085)
υ . . . . 5.654 5.823 1.315

. . . . (0.494) (0.516) (0.044)
log(ξ) . . . . . -0.062 .

. . . . . (0.023) .

log-l -4072.13 -3905.84 -3902.60 -3903.72 -3787.18 -3783.56 -3802.27
Q(20) 33.99 27.46 27.38 25.88 26.29 26.50 25.92
Q2(20) 282.10** 12.61 12.53 11.43 13.16 13.05 11.37

Note: Parameter estimation of ARCH (1), GARCH (1, 1), GJR (1, 1) and FIGARCH (1, d, 1) models. Robust
standard errors are reported in parenthesis. The first four models are estimated by quasi-maximum likelihood.
A Student-t, skewed Student-t and GED distribution is chosen respectively for the last three models. Q(20) and
Q2(20) correspond respectively to the Box-Pierce statistics on standardized and squared standardized residuals
with 20 lags. **: Indicates significance at the 1% level.
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Table 5: Distributions of the non-parametric volatility measures for exchange rates

mean min max std skew kurt Q(20) d
EUR/USD

RV(5−min) 0.52 0.05 10.95 0.49 5.82 75.69 13946.60** 0.34**
RV(30−min) 0.45 0.04 9.18 0.49 5.79 62.98 9999.38** 0.31**
RV(1−hour) 0.44 0.03 8.42 0.52 5.34 48.96 8393.41** 0.29**

BV(5−min) 0.46 0.04 5.65 0.41 4.37 34.81 19510.50** 0.41**
BV(30−min) 0.39 0.03 6.25 0.41 4.79 40.12 13446.60** 0.35**
BV(1−hour) 0.38 0.02 7.59 0.44 5.79 61.00 11624.10** 0.33**

TV(5−min) 0.41 0.05 1.85 0.24 1.83 8.22 35104.10** 0.54**
TV(30−min) 0.36 0.04 2.38 0.25 2.11 9.87 22706.70** 0.42**
TV(1−hour) 0.35 0.02 2.54 0.26 2.11 10.24 16969.00** 0.34**

USD/JPY

RV(5−min) 0.70 0.03 32.90 0.96 13.73 371.52 6859.34** 0.42**
RV(30−min) 0.59 0.02 49.42 1.13 24.29 959.81 2617.29** 0.34**
RV(1−hour) 0.58 0.02 48.57 1.17 21.90 796.02 2381.10** 0.34**

BV(5−min) 0.62 0.03 27.06 0.82 12.85 327.95 8542.60** 0.45**
BV(30−min) 0.52 0.02 41.00 0.94 24.25 953.58 3262.92** 0.35**
BV(1−hour) 0.51 0.02 58.08 1.21 31.27 1388.60 1696.90** 0.30**

TV(5−min) 0.50 0.03 2.09 0.29 1.57 6.13 30602.20** 0.57**
TV(30−min) 0.43 0.02 2.24 0.30 1.83 7.44 19417.80** 0.45**
TV(1−hour) 0.42 0.02 2.42 0.32 1.93 8.00 14471.00** 0.37**

Note: Descriptive statistics on the non-parametric volatility measures of the EUR/USD and
USD/JPY exchange rates. The sample cover is from 3 January 1995 to 30 December 2009. Re-
alized volatilities, bipower variations and truncated power variations are constructed from 5-min,
30-min and 1-hour returns. Q(20) corresponds to the Box-Pierce statistic for serial correlation
with 20 lags. The last column reports the log-periodogram regression estimates of the long memory
parameter, based on the method of Geweke and Porter-Hudak (1983). **: Indicates significance
at the 1% level.

Table 6: The correction factor dw and the asymptotic variance of the ROWVar θ
β 1 0.99 0.975 0.95 0.925 0.90 0.85 0.80
cw HR 1 1.081 1.175 1.318 1.459 1.605 1.921 2.285
cw SR 1 1.017 1.041 1.081 1.122 1.165 1.257 1.358
θ HR 2 2.897 3.707 4.674 5.406 5.998 6.917 7.592
θ SR 2 2.072 2.184 2.367 2.539 2.699 2.989 3.245
dw HR 0.333 0.440 0.554 0.741 0.945 1.177 1.760 2.566

Note: cw, θ and dw for different critical levels β (such that the threshold
k = χ2

1(β), with χ2
1(β) the β quantile of the χ2

1)

Table 7: Daily jump tests

Statistic BVt MinRVt MedRVt

EUR/USD

Zt 475 [0.13] 373 [0.10] 516 [0.14]
logZt 366 [0.10] 243 [0.07] 374 [0.10]
maxlogZt 364 [0.10] 243 [0.07] 374 [0.10]

USD/JPY

Zt 441 [0.12] 360 [0.10] 500 [0.13]
logZt 366 [0.10] 224 [0.06] 381 [0.10]
maxlogZt 365 [0.10] 224 [0.06] 381 [0.10]

Note: Results of the daily jump tests. The sample covers the
periods from 3 January 1995 to 30 December 2009. The ta-
ble reports the number of detected daily jumps and the jump
proportion in brackets (p(jumps)=100×#jumps/#days). The
significance level of the tests is 0.0001. IVt is computed by BVt,
MinRVt, and MedRVt.
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Table 8: Intraday jump tests: LM-test and LH-test

Statistic #jumps p(jumps) #jumpdays p(jumpdays)
EUR/USD

Lee/Mykland 2105 0.20% 1580 42.52%
Lee/Hannig 2589 0.24% 1619 43.57%
Lee/Mykland(filt) 1863 0.17% 1345 36.19%
Lee/Hannig(filt) 2254 0.21% 1411 37.97%

USD/JPY

Lee/Mykland 1866 0.17% 1456 39.14%
Lee/Hannig 2738 0.26% 1576 42.37%
Lee/Mykland(filt) 1838 0.17% 1341 36.04%
Lee/Hannig(filt) 2640 0.25% 1480 39.78%

Note: Results of the intraday jump tests. The sample covers the periods from 3 January
1995 to 30 December 2009. Equation (5.11) and Equation (5.13) give the jump detection
statistics of the tests. “(filt)” implies that the corresponding test accounts for the period-
icity based on the estimator WSD. #jumps is the number of detected intradaily jumps,
p(jumps) is the jump proportion (that is p(jumps)=100×#jumps/#obs), #jumpdays
is the number of days with at least one intraday jump and p(jumpdays) denotes the
jump-day proportion (that is p(jumpdays)=100×#jumpdays/#days). The significance
level of the tests is 0.1.
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Table 9: U.S. Macroeconomic Announcements

Name of announcement Units of announcement Frequency Release lag Source Release time

Average Hourly Earnings $ per hour Monthly Almost none BLS 8:30 AM
Beige Book 8 times per year FRB 2:15 PM

Business Inventories Monthly ∼ 6 weeks CB 10:00 AM
Capacity Utilization Rate Index (2002 = 100), % m-m Monthly ∼ 2 weeks FRB 9:15 AM

Construction Spending % m-m Monthly ∼ 5 weeks CB 10:00 AM
Consumer Confidence Index Index (1985 = 100) Monthly None Conf. Board 10:00 AM

Consumer Credit Report % m-m Monthly ∼ 5 weeks FRB 3:00 PM
Consumer Installment Credit % m-m, % q-q, No. Monthly ∼ 5 weeks FRB 3:00 PM

Consumer Price Index % m-m Monthly ∼ 2 weeks BLS 8:30 AM
(1982 = 100)

Domestic Vehicle Sales Millions of vehicles Monthly Almost none BEA 3:00 PM
Durable Goods Orders % m-m Monthly ∼ 3-4 weeks CB 8:30 AM

Employment Cost Index % q-q Quarterly ∼ 2-3 weeks BLS 8:30 AM
(2005 = 100)

Existing Home Sales No. of sales Monthly ∼ 4 weeks NAR 10:00 AM
Factory Inventories $ billion change Monthly ∼ 4 weeks CB 10:00 AM

Factory Orders $ billion change Monthly ∼ 4 weeks CB 10:00 AM
Federal Budget/Deficit $ Trillions Monthly CBO 2:00 PM

FOMC Minutes 8 times per year ∼ 2-3 weeks FRB 2:00 PM
GDP % q/q Quarterly BEA 8:30 AM

GDP-Advance % q/q Quarterly 1 month lag BEA 8:30 AM
GDP-Deflator % q/q Quarterly BEA 8:30 AM

GDP-Final % q/q Quarterly 3 month lag BEA 8:30 AM
GDP-Preliminary % q/q Quarterly 2 month lag BEA 8:30 AM

Housing Starts No. of units, Monthly ∼ 3 weeks CB 8:30 AM
% m-m

Humphrey-Hawkins Testimony Semiannual FRB Chairman 10:00 AM
Index of Coincident Indicators m-m Monthly ∼ 3 weeks Conf. Board 10:00 AM

Industrial Production Index (2002 = 100), % m-m Monthly ∼ 2 weeks FRB 9:15 AM
Initial Unemployment Claims No. of claims Weekly ∼ 5 days ETA 8:30 AM

International Trade in Goods and Services $ Billions Monthly ∼ 6 weeks Commerce 8:30 AM
Inventories and Sales Ratio Monthly ∼ 6 weeks CB 10:00 AM

Note: See Table 10.
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Table 10: U.S. Macroeconomic Announcements (cont’d)

Name of announcement Units of announcement Frequency Release lag Source Release time

ISM Index (formerly the NAPM Survey) Index Monthly Almost none ISM 10:00 AM
Lagging Indicators m-m Monthly ∼ 3 weeks Conf. Board 10:00 AM
Leading Indicators m-m Monthly ∼ 3 weeks Conf. Board 10:00 AM

M1 Change in $ billions Weekly FRB 4:30 PM
M2 Change in $ billions Weekly FRB 4:30 PM

Merchandise Trade Balance CB 8:30 AM
New Home Sales Thousands Monthly ∼ 3-4 weeks CB 10:00 AM
Nonfarm Payrolls Thousands Monthly A few days BLS 8:30 AM

Personal Consumption Expenditure Index (PCE) % m-m Monthly ∼ 4 weeks BEA 8:30 AM
Personal Income % m-m Monthly ∼ 4 weeks BEA 8:30 AM

Personal Spending % m-m Monthly ∼ 4 weeks BEA 8:30 AM
Producer Price Index % m-m Monthly ∼ 2 weeks BLS 8:30 AM

Index (1982 = 100)
Productivity Costs Index of output/ index of hours worked Quarterly Several months BLS 8:30 AM

Retail Sales (Advance) % m-m Monthly ∼ 2 weeks CB 8:30 AM
Retail Trade $ Millions Monthly ∼ 6 weeks CB 8:45 (Sales)

10:15 (Inventories)
Target Federal Funds Rate % 8 times a year FRB 2:15 PM

Trade Balance $ Billions Monthly ∼ 6-7 weeks BEA 8:30 AM
Treasury Auction Results Weekly Treasury 11:00 AM

Unemployment rate % of labor force Monthly A few days BLS 8:30 AM
U.S. Exports % m-m Monthly ∼ 5-6 weeks CB 8:30 AM

(2000 = 100)
U.S. Imports % m-m Monthly ∼ 5-6 weeks CB 8:30 AM

(2000 = 100)
Value of New Constr. put in place $ Millions Monthly ∼ 5 weeks CB 10:00 AM

% m-m

Note: CPI, consumer price index; GDP, gross domestic product; M1, M2, NAPM, National Association of Purchasing Managers; NFP, nonfarm payroll; PCE, personal
consumption expenditures; PMI, Purchasing Managers’ Index; PPI, producer price index. The following abbreviations are used for announcements: BEA, Bureau of Economic
Analysis; BLS, Bureau of Labor Statistics; CB, U.S. Census Bureau; Conf. Board, Conference Board; CBO, Congressional Budget Office; Commerce, U.S. Department of
Commerce; ETA, Department of Labor’s Employment and Training Administration; FRB, Federal Reserve Board; ISM, Institute for Supply Management; NAR, National
Association of Realtors; Treasury, U.S. Department of the Treasury. % m-m, Percent change from month to month; % q/q, percent change quarter over quarter; % q-q, percent
change quarter to quarter. Descriptions of the announcements are available upon request.
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Table 11: R2 and partial R2s

SYSTEM-I SYSTEM-II
Independent variable(s) log(|yt,i|/σt,i) log(|yt,i|/RVt,i)

Full regression (adjusted) 0.1175 0.1828
Announcement dummies 0.0009 0.0002
Absolute announcement surprises 0.0035 0.0044
Seasonal effect 0.0659 0.0457
Lags of absolute returns 0.0134 0.0644
Friday night dummies 0.1036 0.0008

Note: The table displays the R2 and partial R2s from regression (6.2)
and various combinations of its regressors: the announcement dum-

mies, β
(US)
0 D

(US)
t,i and β

(For)
1 D

(For)
t,i ; the absolute announcement surprises,

∑N
j=1 β2,j |Surprise

(j)
t,i |; the periodic component,

∑4
q=1 β3,q cos

(

i2πq
24

)

and
∑4

q=1 β4,(4+q) sin
(

i2πq
24

)

; five lags of absolute returns,
∑5

l=1 β5,l|yt,i−1|; and

the Friday night indicators,
∑23

h=19 β6,hD
(Fridayh)
t,i . Endogenous variables are

log(|yt,i|/σt,i) in SYSTEM-I, and log(|yt,i|/RVt,i) in SYSTEM-II.
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Table 12: Regression coefficients

SYSTEM-I SYSTEM-II

Independent variable Coefficient t-HACSE Impact Coefficient t-HACSE Impact

Constant -0.777 -85.100 (−) -5.149 -287.000 (−)
US Announcement Dummy 0.240 6.360 (+) 0.114 2.560 (+)
German/Euro Announcement Dummy -0.054 -1.380 . -0.065 -1.290 .
U.S.: Real GDP: Advance 0.417 2.890 (+) 0.478 2.020 (+)
U.S.: Real GDP: Preliminary -0.138 -0.779 . -0.238 -1.090 .
U.S.: Real GDP: Final 0.158 1.810 (+) 0.135 1.320 .
U.S.: Business Inventories -0.041 -0.396 . -0.062 -0.399 .
U.S.: Capacity Utilization Rate: Total Industry -0.409 -2.840 (−) -0.439 -2.480 (−)
U.S.: Consumer Confidence 0.222 2.050 (+) 0.355 3.000 (+)
U.S.: Construction Spending 0.265 2.670 (+) 0.434 4.390 (+)
U.S.: Consumer Price Index 0.040 0.386 . 0.154 1.160 .
U.S.: Consumer Credit -0.287 -2.930 (−) -0.068 -0.568 .
U.S.: New Orders: Advance Durable Goods 0.128 1.320 . 0.211 1.890 .
U.S.: New Orders -0.284 -2.430 (−) -0.306 -1.970 (−)
U.S.: Housing Starts -0.019 -0.223 . 0.035 0.316 .
U.S.: Industrial Production 0.307 2.110 (+) 0.544 3.860 (+)
U.S.: Composite Index of Leading Indicators -0.107 -1.050 . -0.016 -0.137 .
U.S.: ISM: Mfg Composite Index 0.345 3.080 (+) 0.519 4.310 (+)
U.S.: Employees on Nonfarm Payrolls 0.842 5.490 (+) 1.688 7.030 (+)
U.S.: New Home Sales 0.061 0.585 . 0.070 0.630 .
U.S.: PCE -0.041 -0.461 . -0.013 -0.106 .
U.S.: Personal Income -0.181 -1.490 . -0.115 -0.511 .
U.S.: Producer Price Index -0.034 -0.344 . -0.010 -0.084 .
U.S.: Retail Sales 0.170 1.300 . 0.151 1.330 .
U.S.: Retail Sales ex Motor Vehicles 0.127 0.922 . 0.193 1.290 .
U.S.: Trade Balance: Goods & Services [BOP] 0.350 3.720 (+) 0.499 4.540 (+)
U.S.: Government Surplus/Deficit -0.049 -0.588 . 0.038 0.443 .
U.S.: Initial Claims -0.004 -0.075 . 0.072 1.260 .
Euro area: CPI Flash Estimate Y/Y %Chg 0.121 1.630 . 0.277 1.060 .
Euro area: Industrial Production Y/Y %Chg WDA 0.236 2.750 (+) 0.298 2.370 (+)
Euro area: Money Supply M3 Y/Y %Chg -0.051 -0.574 . -0.010 -0.082 .
Euro area: Harmonised CPI Y/Y %Chg -0.019 -0.175 . -0.046 -0.337 .
Euro area: Unemployment Rate 0.109 1.310 . 0.110 1.070 .
Euro area: Producer Price Index Y/Y %Chg 0.130 1.670 . 0.196 2.210 (+)
Euro area: Retail Sales WDA Y/Y %Chg -0.183 -1.650 . -0.171 -1.340 .
Euro area: Trade Balance Eurostat 0.005 0.047 . -0.061 -0.380 .
Euro area: Preliminary Real GDP Y/Y %Chg -0.287 -1.420 . -0.012 -0.044 .
Euro area: Final Real GDP Y/Y %Chg 0.039 0.303 . -0.215 -0.649 .

Note: See Table 13.
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Table 13: Regression coefficients (cont’d)

SYSTEM-I SYSTEM-II

Independent variable Coefficient t-HACSE Impact Coefficient t-HACSE Impact

Germany: Current Account Balance -0.089 -0.660 . -0.016 -0.083 .
Germany: Final Cost of Living 0.066 0.466 . -0.033 -0.232 .
Germany: Prelim Cost of Living -0.137 -1.720 (−) -0.310 -1.870 (−)
Germany: IP: Total Industry M/M %Chg -0.028 -0.279 . 0.067 0.565 .
Germany: Producer Price Index: Mfg Y/Y %Chg -0.001 -0.014 . 0.053 0.374 .
Germany: Real Retail Sales Y/Y %Chg 0.075 0.627 . 0.151 1.030 .
Germany: Current Account: Trade Balance 0.138 1.180 . 0.058 0.322 .
Germany: Real GDP Q/Q %Chg 0.447 4.570 (+) 0.445 2.970 (+)
Cos q1 -0.136 -19.200 (−) 0.013 1.250
Cos q2 0.021 3.400 (+) 0.012 1.620
Cos q3 -0.157 -24.200 (−) -0.171 -21.800 (−)
Cos q4 -0.120 -18.400 (−) -0.140 -18.300 (−)
Sin q1 0.248 39.700 (+) 0.249 28.400 (+)
Sin q2 -0.021 -3.210 (−) -0.015 -1.840 (−)
Sin q3 0.027 4.060 (+) 0.058 6.920 (+)
Sin q4 -0.074 -11.600 (−) -0.072 -9.540 (−)
Abs Return Lag1 1.124 17.300 (+) 2.465 30.900 (+)
Abs Return Lag2 0.714 10.700 (+) 1.811 21.100 (+)
Abs Return Lag3 0.566 8.280 (+) 1.765 18.600 (+)
Abs Return Lag4 0.582 8.790 (+) 1.764 19.600 (+)
Abs Return Lag5 0.450 6.940 (+) 1.642 18.900 (+)
Friday 1900 -0.494 -3.510 (−) -1.050 -5.310 (−)
Friday 2000 -0.269 -1.520 . -0.624 -1.620 .
Friday 2100 -0.056 -0.178 . 0.041 0.500 .
Friday 2200 -0.375 -1.760 (−) . . .
Friday 2300 -1.039 -72.000 (−) . . .

Note: The table shows the regression coefficients from estimating Equation (6.2) on log(|yt,i|/ŝt), over the sam-
ple period November 5, 2001, to March 12, 2010. Endogenous variables are log(|yt,i|/σt,i) in SYSTEM-I, and
log(|yt,i|/RVt,i) in SYSTEM-II. BOP, balance of payments; CPI, consumer price index; GDP, gross domestic prod-
uct; IP, industrial production; ISM, Institute for Supply Management; PCE, personal consumption expenditures; PPI,
producer price index; WDA, work days adjusted. t-HACSE: Heteroskedasticity and autocorrelation corrected robust
t-statistics. (+): Indicates statistically significant positive coefficient. (−): Indicates statistically significant negative
coefficient.

58



Table 14: Tobit-GARCH models for jumps
S&P futures Nasdaq futures Dow jones futures U.S. bond futures USD/EUR JPY/USD USD/GBP CHF/USD

Coef. P > |t| Coef. P > |t| Coef. P > |t| Coef. P > |t| Coef. P > |t| Coef. P > |t| Coef. P > |t| Coef. P > |t|

CONSCONF - - - - 0.71 0.88 - - - - 0.74 0.00 0.38 0.08 0.43 0.02
CONSCONF (-1) - - - - - - 0.96 0.01 - - - - - - - -
CONSCRED - - - - 0.98 0.10 - - - - - - 0.06 0.99 -0.13 0.99
CPI 2.13 0.00 1.90 0.59 0.81 0.68 1.20 0.00 0.01 1.00 0.09 0.99 - - -0.06 0.99
FFRTARGET 1.06 0.49 1.39 0.63 1.65 0.00 0.74 0.05 0.88 0.00 0.72 0.00 0.66 0.00 0.57 0.00
FFRTARGET (-1) - - - - - - 0.66 0.02 - - - - - - - -
GDPADV 2.19 0.01 3.47 0.01 2.09 0.00 - - - - - - 0.40 0.83 0.48 0.81
GDPPRE - - - - 1.17 0.51 - - 0.81 0.00 0.84 0.01 - - 0.58 0.04
GVFISCDEF 0.97 0.69 - - - - 0.30 0.88 -0.55 0.17 -0.72 0.08 -0.32 0.66 -0.62 0.08
MFGIND - - - - 2.61 0.00 1.69 0.74 0.24 0.81 -0.21 1.00 -0.04 1.00 0.54 0.12
NFPAYROL 2.28 0.00 4.75 0.00 1.78 0.00 1.52 0.00 0.98 0.00 0.35 0.25 0.16 0.94 0.43 0.00
PPI 1.05 0.14 -0.12 0.96 0.49 0.70 0.55 0.10 -0.70 0.99 -0.82 0.99 -0.15 0.58 -1.02 0.67
RETSALES 0.78 0.04 1.37 0.05 0.59 0.27 0.41 0.27 -0.21 0.99 - - - - -1.18 0.99
TRADEBAL -10.09 0.79 - - 0.10 0.92 -3.99 0.81 0.43 0.05 0.02 1.00 0.17 0.89 0.47 0.02
ω 1.65 0.03 11.58 0.00 0.90 0.10 0.69 0.06 0.30 0.00 0.26 0.00 0.25 0.00 0.52 0.00
α1 0.27 0.02 0.34 0.00 0.11 0.01 0.19 0.02 0.19 0.00 0.18 0.00 0.28 0.00 0.26 0.00
α2 - - - - - - - - - - - - - - 0.09 0.00
β1 0.46 0.01 - - 0.72 0.00 0.46 0.04 0.49 0.00 0.60 0.00 0.28 0.00 - -
Function value -877.44 0.00 -1204.57 0.00 -924.59 0.00 -917.35 0.00 -7090.68 -7542.77 -7727.96 -7331.87
# obs 49135.00 0.00 49662.00 0.00 53909.00 0.00 40559.00 0.00 352127.00 351359.00 352799.00 352319.00

Note: The latent Tobit jump variable is given by Jump∗t,i = µ+ ηt,i +µt,i + ξt,i + εt,i, where |Jumpt,i| = Jump∗t,i if Jump∗t,i > 0 and |Jumpt,i| = 0 if Jump∗t,i ≤ 0, εt,i|It,i−1 is

N(0, σ2
t ). The variance σ2

t is assumed to follow an ARCH or GARCH process. |Jumpt,i| represents significant jumps (α = 0.1) as defined in the theoretical part. ηt,i controls for
day of the week effects (not reported) and µt,i includes surprises concerning macro announcements. For each series, we regress jumps in absolute value on surprises in absolute
value. ξt,i controls for intradaily periodicity (not reported). Estimates and robust p-values (2× (1− Prob(X < |tstat|)), X being a t−distributed random variable with N −K
(# obs. - #parameters) degrees of freedom, and tstat being the estimated coefficient over its std. error) are reported for surprise coefficient (if it is significant at 10% in at
leats one series), as well as the ARCH and GARCH coefficients. Regressors with no contemporaneous match with significant jumps are excluded from the model. See Lahaye,
Laurent, and Neely (2011) for the sample periods.
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Table 15: Probit models for cojumps
USD/EUR - USD/GBP USD/EUR - JPY/USD USD/EUR - CHF/USD USD/GBP - JPY/USD USD/GBP - CHF/USD JPY/USD - CHF/USD
Coef. P > |t| Coef. P > |t| Coef. P > |t| Coef. P > |t| Coef. P > |t|

CNSTRSPEND - - - - -7.41 0.00 - - - - - -
CONSCONF - - - - - - - - - - 0.73 0.00
FFRTARGET 1.08 0.00 0.86 0.00 0.83 0.00 0.90 0.00 0.89 0.00 0.74 0.01
GDPPRE - - 0.87 0.00 0.60 0.02 - - - - 0.83 0.00
GVFISCDEF - - 0.23 0.07 0.17 0.18 - - - - 0.25 0.05
MFGIND - - - - 1.50 0.00 - - - - - -
NFPAYROL - - 0.65 0.00 0.79 0.00 - - - - 0.61 0.00
TRADEBAL - - - - 0.76 0.02 - - - - - -
Function value -1842.90 -1181.87 -3130.59 -742.60 -1610.76 -933.24
Pseudo R2 0.04 0.04 0.03 0.05 0.04 0.05
# obs 349355 348967 349557 348593 349542 348619

Note: The latent probit cojump variable is given by COJump∗t,i = µ+ ηt,i + µt,i + ξt,i + εt,i, where COJumpt,i = 1 if COJump∗t,i > 0 and COJumpt,i = 0 if COJump∗t,i ≤ 0.

εt,i is NID(0, 1). COJumpt,i is the cojump indicator). ηt,i controls for day of the week effects (not reported) and µt,i includes surprises concerning macro announcements. For
each series, we regress cojumps on surprises in absolute value. ξt,i controls for intradaily seasonality (not reported). Estimates and robust p-values (2× (1−Prob(X < |tstat|)),
X being a t−distributed random variable with N − K (# obs. - #parameters) degrees of freedom, and tstat being the estimated coefficient over its std. error) are reported
for each surprise coefficient. Regressors with no contemporaneous match with significant cojumps are excluded from the model. We further report the maximized log-likelihood
function value, and the McFadden R2 (defined as 1− LogLik1

LogLik0
, i.e. 1 minus the ratio of the log likelihood function value of the full model to the constant only model one). See

Lahaye, Laurent, and Neely (2011) for the sample periods.
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Figure 1: Stylized facts of the daily EUR/USD exchange rate.
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Figure 2: Stylized facts of the daily USD/JPY exchange rate.
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Figure 3: RVt, BVt and ROWV art constructed from 5-min, 30-min and 1-hour intraday returns for the
EUR/USD series.
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Figure 4: MinRVt, MedRVt and TVt constructed from 5-min, 30-min and 1-hour intraday returns for the
EUR/USD series. We set g = 0.3× 9 and ω̃ = 0.47 as thresholds for TVt.
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Figure 5: ACFs of the realized volatility (RVt), bipower variation (BVt) and truncated power variation (TVt)
constructed from 5-min, 30-min and 1-hour intraday returns.
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Figure 6: ACF of the absolute EUR/USD and USD/JPY returns at 5-min, 30-min and 1-hour sampling frequen-
cies. The number of lags corresponds to 5 days.
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Figure 7: Mean absolute 5-min EUR/USD returns on whole sample, Wednesdays, and Fridays. The X-axis
represents the intraday periods in GMT, from 21:00 GMT of day t− 1 to 21:00 GMT of day t.
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Figure 8: Estimates of the non-parametric periodicity filters for the 5-min EUR/USD and USD/JPY exchange
rates.
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Figure 9: Estimates of the parametric periodicity filters for the 5-min EUR/USD and USD/JPY exchange rates.
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Figure 10: Proportion of intraday returns affected by spurious jumps according to the original and the filtered
Lee/Hannig tests. The periodicity estimators are WSD and TML. DGP: Continuous-time GARCH diffusion model.
Number of days: 250. Number of replications: 1000. Sampling frequencies: 30-seconds (top-row panels), 5-minutes
(middle-row panels), 15-minutes (bottom-row panels). n = M and α = 0.1. Rejection thresholds: 4.74 (for
30-seconds) , 4.30 (for 5-minutes), and 4.10 (for 15-minutes).
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Figure 11: EUR/USD and USD/JPY daily realized jumps. The test statistics are based on maxlogZt. The
significance level of the tests is 0.0001.
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Figure 12: Number of EUR/USD and USD/JPY jumps per intraday period of time.
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Figure 13: The X-axis represents intraday time (U.S. ET). The left Y-axis displays the number of significant
jumps (α = 0.1), while the right Y-axis shows the mean of absolute values of significant jumps. Solid lines denote
the number of jumps and dashed lines denote mean jump size. The vertical lines denote the interval containing
8:30 a.m., the time of most news arrivals. The sample period is 1987-2004. SOURCE: From Figure 2 in Lahaye,
Laurent, and Neely (2011).
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Figure 14: Top panel shows the annualized realized volatility, computed from 5-minute squared returns, for the
JPY/USD market from March 14 to March 24, 2011. The horizontal lines show the 10th and 90th percentiles of
volatility for the USD/JPY over the March 26, 1998-March 31, 2011, period. Bottom panel shows option-implied
volatility over four horizons for the same market during the same period in March 2011.
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