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1.1 Introduction

This chapter presents an introductory review of volatility models and some
applications. We link our review with other chapters that contain more detailed
presentations. Section 1.2 deals with generalized autoregressive conditionally
heteroskedastic models, Section 1.3 with stochastic volatility (SV) models, and
Section 1.4 with realized volatility.

1.2 GARCH

1.2.1 UNIVARIATE GARCH

Univariate ARCH models appeared in the literature with the paper of Engle
(1982a), soon followed by the generalization to GARCH of Bollerslev (1986).
Although applied, in these pathbreaking papers, to account for the changing
volatility of inflation series, the models and their later extensions were quickly
found to be relevant for the conditional volatility of financial returns observed
at a monthly and higher frequency (Bollerslev, 1987), and thus to the study
of the intertemporal relation between risk and expected return (French et al.,
1987; Engle et al., 1987). The reason is that time series of returns (even if
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2 CHAPTER 1 Volatility Models

adjusted for autocorrelation, typically through an ARMA model) have several
features that are well fitted by GARCH models. The main stylized feature is
volatility clustering: ‘‘large changes tend to be followed by large changes, of either
sign, and small changes tend to be followed by small changes’’ (Mandelbrot,
1963). This results in positive autocorrelation coefficients of squared returns,
typically with a relatively slowly decreasing pattern starting from a first small
value (say, <0.2). Said differently, volatility, measured by squared returns,
is persistent, hence to some extent predictable even if it is noisy. Another
stylized property of financial returns that was known long before ARCH models
appeared is that their unconditional probability distributions are leptokurtic, that
is, they have fatter tails and more mass around their center than the Gaussian
distribution (Mandelbrot 1963). In this and later papers (e.g., Fama, 1963,
1965; Mandelbrot and Taylor, 1967), the returns are modeled as independently
and identically distributed (i.i.d.) according to a stable Paretian distribution.
But clearly, if squared returns are autocorrelated, they are not independent.
A great advantage of GARCH models is that the returns are not assumed
independent, and even if they are assumed Gaussian conditional to past returns,
unconditionally they are not Gaussian, because volatility clustering generates
leptokurtosis.

We illustrate the stylized facts with the percentage daily returns of the
S&P 500 index, that is, the returns (yt ) are computed as 100(pt − pt−1), where
pt = log Pt and Pt is the closing price index value adjusted for dividends and
splits (available at http://finance.yahoo.com) and t is the time index referring to
trading day t. The sample period starts on January 3, 1950 and ends on July
14, 2011 for a total of 15,482 returns. Table 1.1 contains descriptive statistics
of the original and demeaned returns, the latter being the residuals of an AR(2)
model fitted to the original returns. The descriptive statistics of the two series
hardly differ and the large excess kurtosis coefficients confirm their leptokurtosis.

TABLE 1.1 Descriptive Statistics for S&P 500
Returns

Returns Demeaned Returns

Observations 15,482 15,480

Mean 0.02818 0

Standard deviation 0.97078 0.96897

Skewness −1.0567 −1.0738

Kurtosis 32.035 31.623

Minimum −22.900 −22.856

Maximum 10.957 10.571

Returns definition and source: (see text). Demeaned returns are resid-
uals of an AR(2) model fitted to the returns by ordinary least squares
(OLS). Skewness is the ratio of the third centered moment to the third
power of the standard deviation. Kurtosis is the ratio of the fourth
centered moment to the square of the variance.
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FIGURE 1.1 S&P 500 index returns (y).

Figure 1.1 displays the full sample series of returns (a) and the series for the
last five years (2006/07/14–2011/07/14) (b). Figure 1.2 shows the full series of
absolute demeaned returns (a), the sample ACF of the corresponding squared
series until lag 100 (b), and the absolute demeaned returns or the last five years
(c). The squared demeaned returns are positively autocorrelated: their ACF starts
at 0.15, has a peak of 0.20 at lag 5, and decreases rather slowly. Volatility
clustering is clearly visible on the top and bottom graphs of both figures. The
leptokutrosis of the estimated density of the demeaned returns, shown over a
truncated support—see maximum and minimum values in Table 1.1—is visible
on Figure 1.3, where a Gaussian density with the same mean (0) and standard
deviation (0.969) is drawn for comparison. The negative skewness coefficients
reported in Table 1.1 illustrate that large negative returns are more probable than
large positive ones. This is also a widespread feature, by no means universal, of
financial return series, which we discuss below.

1.2.1.1 Structure of GARCH Models. We define a GARCH model for yt
(an asset return as defined above) by

yt − μt = εt = σt zt , (1.1)

where zt is an unobservable random variable belonging to an i.i.d. process, with
mean equal to 0 and variance equal to 1, E(zt ) = 0 and Var(zt ) = 1. The symbols
μt and σt denote measurable functions with respect to a σ -field Ft−1 generated
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FIGURE 1.2 S&P 500 index demeaned absolute returns and ACF of their square.
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FIGURE 1.3 Density estimate of S&P 500 index demeaned returns and Gaussian density.
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by yt−j for j ≥ 1 and possibly by other variables available at time t − 1. It follows
that μt and σ 2

t are the conditional mean and variance of yt , respectively, that
is, μt = E(yt |Ft−1) = Et−1(yt ) and σ 2

t = Var(yt |Ft−1) = Vart−1(yt ), so that
Et−1(εt ) = 0 and Vart−1(εt ) = σ 2

t . The i.i.d. hypothesis for the zt process can
be replaced by the assumption that the process is an m.d.s. (martingale difference
sequence), such that Et−1(zt ) = 0 and Vart−1(zt ) = 1.

The model is fully parametric if μt , σ 2
t , and f (zt ), the probability density

function (pdf) of zt (assumed to be time invariant), are indexed by a finite dimen-
sional parameter vector denoted by θ ∈ � (the parameter space). Otherwise, the
model is nonparametric or semiparametric, see Su et al. (2012) in this Handbook
for a review of this approach. In the parametric version, the conditional mean
function is typically specified as an ARMA model, augmented by additional
regressors according to the modeling objectives. We discuss briefly below the
specification of the conditional variance as a function of the variables generating
Ft−1 and of the probability distribution of zt .

1.2.1.2 Early GARCH Models. The GARCH(1,1) equation,

σ 2
t = ω + βσ 2

t−1 + αε2
t−1, (1.2)

where ω, β, and α are parameters, is the most widely used formulation. The
positivity of σ 2

t is ensured by the following sufficient restrictions: ω > 0, α ≥ 0,
and β ≥ 0, but if α = 0, β must be set to 0 as well, otherwise the sequence
σ 2

t tends to a constant and β is not identifiable. If q lags of ε2
t and p lags of

σ 2
t are included (instead of setting p = q = 1 as above), the model is named

GARCH(p,q), as put forward by Bollerslev (1986). Tests of zero restrictions for
the lag coefficients and model choice criteria result in choices of p and q equal to
1 in a vast diversity of data series and sample sizes, with p or q equal to two rarely
selected and higher values almost never.

To understand why the GARCH(1,1) equation together with (Eq. 1.1)
and the assumptions stated above is able to account for volatility clustering and
leptokurtosis, let us note that the autocorrelation coefficients of ε2

t , denoted by
ρj , are equal to ρ1 = α(1 − β2 − αβ)/(1 − β2 − 2αβ), which is larger than
α, and ρj = (α + β)ρj−1 for j ≥ 2, if α + β < 1. The last inequality ensures
that Var(εt ) = ω/(1 − α − β) (denoted by σ 2) exists and that εt is covariance
stationary. Moreover, the autocorrelations of ε2

t are positive and decaying at the
rate α + β. The sum α + β is referred to as the persistence of the conditional
variance process. For financial return series, estimates of α and β are often
in the ranges [0.02, 0.25] and [0.75, 0.98], respectively, with α often in the
lower part of the interval and β in the upper part for daily series, such that
the persistence is close to but rarely exceeding 1. Hence, ρ1 is typically small,
and the autocorrelations decay slowly, though still geometrically. Table 1.2
reports quasi-maximum likelihood (QML) estimates (see Section 1.2.1.3) for the
demeaned S&P 500 returns over the full sample and 12 subsamples of 5 years
of data (except for the first and last subsamples, which are a bit longer). The
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TABLE 1.2 GARCH(1,1) QML Estimates for S&P 500 Demeaned Returns

Period T α β α + β σ 2 KC ρ1

1950-01-06 15,480 0.079 0.915 0.994 1.301 ∞ 0.405

2011-07-14 0.939 31.62 0.154

2006-01-03 1393 0.092 0.898 0.990 1.762 16.08 0.351

2011-07-14 2.306 11.53 0.209

2001-01-02 1256 0.073 0.920 0.993 1.178 18.34 0.344

2005-12-30 1.320 5.34 0.186

1996-01-02 1263 0.094 0.882 0.977 1.638 4.91 0.238

2000-12-29 1.348 6.71 0.209

1991-01-02 1264 0.026 0.963 0.989 0.389 3.20 0.056

1995-12-29 0.423 5.62 0.027

1986-01-02 1264 0.156 0.755 0.911 1.397 4.20 0.250

1990-12-31 1.632 87.53 0.118

1981-01-02 1264 0.033 0.956 0.989 0.720 3.31 0.076

1985-12-31 0.756 4.77 0.050

1976-01-02 1263 0.044 0.943 0.987 0.602 3.54 0.111

1980-12-31 0.595 4.34 0.128

1971-01-04 1262 0.072 0.923 0.995 1.006 35.83 0.362

1975-12-31 0.885 4.84 0.165

1966-01-03 1233 0.138 0.817 0.955 0.499 5.33 0.285

1970-12-31 0.493 5.99 0.233

1961-01-03 1258 0.237 0.733 0.970 0.550 ∞ 0.599

1965-12-31 0.417 20.40 0.427

1956-01-03 1260 0.088 0.868 0.956 0.472 3.64 0.158

1960-12-30 0.471 5.29 0.124

1950-01-03 1500 0.020 0.975 0.995 0.651 3.29 0.062

1955-12-30 0.537 12.81 0.104

T , number of observations; σ 2 is estimated as ω/(1 − α − β) using the (unreported) estimate of ω, KC
using Equation 1.3 with λ = 3 (∞ means that the existence condition in Equation 1.3 is not satisfied),
and ρ1 as α(1 − β2 − αβ)/(1 − β2 − 2αβ). The data in the second row (for each period) are the sample
variance (σ 2 column), kurtosis coefficient (KC column), and first-order autocorrelation of squared returns.
Results obtained with GARCH module of OxMetrics 6.20. demeaned returns are defined in Table 1.1.

kurtosis coefficient, defined as E(ε4
t )/Var(εt )2 and denoted by KC, is equal to

KC = λ
(1 − α2 − β2 − αβ)

(1 − λα2 − β2 − 2αβ)
, if λα2 − β2 − 2αβ < 1, (1.3)

where λ = E(z4
t ) is the kurtosis coefficient of zt , so that KC is larger than λ.

In particular, if zt is Gaussian, λ = 3 and εt is leptokurtic. However, it is not
easy to obtain jointly a small value of ρ1 and a high kurtosis with a small value of
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α, a large value of β and a Gaussian distribution for zt : for example, α = 0.05,
β = 0.93, yield ρ1 = 0.11, while KC = 3.43 if λ = 3. If λ is set to 5, KC
increases to 6.69. In Table 1.2, it can be seen that estimates of the parameters
fit the unconditional variance much better than the first autocorrelation and
especially the kurtosis coefficients. The extreme value of the kurtosis in the period
1986–1990 is due to the extreme negative return of 19 October, 1987.

The GARCH(1,1) equation (Eq. 1.2) is the universal reference with respect
to which all its extensions and variants are compared. An (almost) exhaustive list
of GARCH equations in 2008 is provided in the ARCH glossary of Bollerslev
(2008). Several of them are presented by Teräsvirta (2009). The formulation in
Equation 1.2 is linear in the parameters but others are not, and most of these are
presented in Chapter 2 by Teräsvirta (2012) in this Handbook. A widely used
extension introduces an additional term in Equation 1.2, as given in Glosten
et al. (1993):

σ 2
t = ω + βσ 2

t−1 + αε2
t−1 + γ ε2

t−1I (εt−1 < 0). (1.4)

With γ = 0, the conditional variance response to a past shock (εt−1) of given
absolute value is the same whether the shock is positive or negative. The news
impact curve, which traces σ 2

t as a function of εt−1 for given values of ω + βσ 2
t−1

and α, is a parabola having its minimum at εt−1 = 0. If γ is positive, the
response is stronger for a past negative shock than for a positive one of the
same absolute value and the news impact curve is asymmetric (steeper to the left
of 0). This positive effect is found empirically for many (individual and index)
stock return series and may be interpreted as the leverage effect uncovered by
Black (1976). This effect for a particular firm says that a negative shock—a
return below its expected value—implies that the firm is more leveraged, that
is, has a higher ratio of debt to stock value, and is therefore more risky, so that
the volatility should increase. The extended GARCH model (Eq. 1.4) is named
GJR-GARCH or just GJR and referred to as an asymmetric GARCH equation.
There exist several other GARCH equations that allow for an asymmetric news
impact effect, in particular, the EGARCH model of Nelson (1991b) and the
TGARCH model of Zakoian (1994). The positive asymmetric response of stock
return volatility to past shocks is considered as a stylized fact, but there is no
consensus that the finding of positive γ estimates corresponds actually to the
financial leverage effect. Negative estimates of γ are found for commodity return
series as documented in Carpantier (2010), who names it the inverse leverage
effect. Engle (2011) also provides evidence of this effect for returns of a gold price
series, volatility indexes, some exchange rates, and other series and interprets this
as a hedge effect (the mentioned type of series are from typical hedge assets).

1.2.1.3 Probability Distributions for zt . The Gaussian distribution was the
first to be used for estimation by the method of maximum likelihood (ML). The
likelihood function based on the Gaussian distribution has a QML interpretation,
that is, it provides consistent and asymptotically Gaussian estimators of the con-
ditional mean and GARCH equation parameters provided that the conditional
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mean and variance are correctly specified. See Bollerslev et al. (1994, Section 2.3)
for a short presentation of QML for GARCH and Francq and Zakoian (2010,
Chapter 7) for more details and references. The (quasi-)log-likelihood function
is based on the assumption of independence of the zt innovations (even if the
latter are only an m.d.s.). For a sample of T observations collected in the vector
y, it is written

�T (θ; y) =
T∑

t=1

�(yt; θ ), (1.5)

where �(yt; θ ) = log f (yt |θ ), with f (yt |θ ) the density function of yt obtained
by the change of variable from zt to yt implied by Equation 1.1. Actu-
ally, f (yt |θ ) is conditional on Ft−1 through μt and σ 2

t . For example, if
zt ∼ N (0, 1) and yt ∼ N (μt , σ 2

t ), and apart from a constant log f (yt |θ ) =
−0.5[log σ 2

t + (yt − μt )2/σ 2
t ]. As mentioned above, the Gaussian assumption

implies conditional mesokurtosis for yt (i.e., a kurtosis coefficient equal to 3 for
zt ) and unconditional leptokurtosis if a GARCH effect exists, but the degree of
leptokurtosis may be too small to fit the kurtosis of the data. For this reason,
Bollerslev (1987) proposed to use the t-distribution for zt , since it implies con-
ditional leptokurtosis and, therefore, stronger unconditional leptokurtosis. The
functional expression of �(yt; θ ), if f (zt ) is a t-density with ν degrees of freedom,
is given by (apart from a constant) log[�(ν + 1/2)/�(ν/2)] − 0.5{(ν − 2)σ 2

t +
(ν + 1)(yt − μt )2/[(ν − 2)σ 2

t ]}. Notice that θ includes ν in addition to the
parameters indexing μt and σ 2

t , and the restriction that ν be larger than 2 is
imposed to ensure the existence of the variance of yt . When ν > 4, the fourth
moment exists and the conditional kurtosis coefficient, that is, the λ to be used
in Equation 1.3, is equal to 3 + 6(ν − 4)−1. Another family of distributions for
zt , which is sometimes used in GARCH estimation is the generalized error (GE)
distribution indexed by the positive parameter ν. It was proposed by Nelson
(1991b). It implies conditional leptokurtosis, if ν > 2; platykurtosis, if ν < 2;
and corresponds to the Gaussian distribution, if ν = 2.

The Gaussian, t, and GE distributions are symmetric around 0. The
symmetry of the conditional distribution does not necessarily imply the same
property for the unconditional one. He et al. (2008) show that conditional
symmetry combined with a constant conditional mean implies unconditional
symmetry, whatever the GARCH equation is (thus, even if the news impact
curve is itself asymmetric). They also show that a time-varying conditional
mean is sufficient for creating unconditional asymmetry (even if the conditional
density is symmetric), but the conditional mean dynamics has to be very strong
to induce nonnegligible unconditional asymmetry. Empirically, the conditional
mean dynamics is weak for return series as their autocorrelations are small. Since
it is obvious that conditional asymmetry implies the same unconditionally, an
easy way to account for the latter, which is not rare in financial return series as
illustrated above, is to employ a conditionally asymmetric distribution. Probably
the most used asymmetric (or skewed) distributions in GARCH modeling is
the skewed-t of Hansen (1994). Bond (2001) surveys asymmetric conditional
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TABLE 1.3 GJR-GARCH(1,1) ML Estimates for S&P 500 Demeaned Returns
for the Period 2006-07-14 Until 2011-07-14 (1260 Observations)

Density BIC α γ β ω ν ξ

Gaussian 3.132 −0.0225 0.181 0.915 0.0212 — —

(7.3) (0.9) (0.0) (0.0)

GE 3.082 −0.0209 0.182 0.914 0.0137 1.24 —

(11) (0.9) (0.0) (2.9) (0.0)

t 3.087 −0.0255 0.196 0.920 0.0106 5.05 —

(6.7) (0.0) (0.0) (7.5) (0.0)

Skewed-t 3.074 −0.0289 0.206 0.919 0.0140 5.90 −0.18

(1.4) (0.0) (0.0) (2.9) (0.0) (0.0)

Results obtained with G@RCH module of OxMetrics 6.20. Demeaned returns are defined as in Table 1.1.
In parentheses: p-values in percentage.

densities for ARCH modeling. Another way to account for asymmetry and
excess kurtosis is to estimate the conditional distribution nonparametrically, as
given by Engle and Gonzalez-Rivera (1991)—see also Teräsvirta (2012) in this
Handbook.

The use of an asymmetric conditional density often improves the fit of a
model as illustrated in Table 1.3—the Bayesian information criterion (BIC)
is minimized for the skewed-t choice—and may be useful in Value-at-Risk
(VaR) forecasting (see below). The skewed-t-density is indexed by an asymmetry
parameter ξ in addition to the degrees of freedom parameter ν also indexing the
symmetric t-density used by Bollerslev (1987). A negative ξ corresponds to a
left-skewed density, a positive ξ to right skewness, and for ξ = 0 the skewed-t
reduces to the symmetric t. The estimation results in Table 1.3 show that the
conditional skewed-t is skewed to the left, which generates unconditional left
skewness, in agreement with the negative skewness coefficient of the data, equal
to −0.23. Notice that ξ is not the skewness coefficient, that is, the values
−0.18 and −0.23 are not directly comparable in magnitude. The data kurtosis
coefficient is equal to 10.9, hence it is not surprising that the estimated degrees
of freedom parameter is of the order of 6 for the skewed-t, 5 for the symmetric t,
and that the estimated GE parameter value of 1.24 is well below 2. Notice that,
perhaps with the exception of ω, the estimates of the GJR-GARCH equation
parameters are not sensitive to the choice of the density used for the estimation.
An unusual feature of the results are the negative estimates of α, but except in
the skewed-t case, α is not significantly different from 0 at the level of 5%.

1.2.1.4 New GARCH Models. Although early GARCH models have been
and are still widely used, a viewpoint slowly emerged, according to which these
models may be too rigid for fitting return series, especially over a long span. This
is related to the rather frequent empirical finding that the estimated persistence
of conditional variances is high (i.e., close to 1), as illustrated by the results in
Table 1.2. In the GARCH infancy epoch, Engle and Bollerslev (1986) suggested
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that it might be relevant to impose the restriction that α + β be equal to 1 in
the GARCH equation (Eq. 1.2), then named integrated GARCH (IGARCH)
by analogy with the unit root literature. However, the IGARCH equation

σ 2
t = ω + σ 2

t−1 + α(ε2
t−1 − σ 2

t−1) (1.6)

implies that the unconditional variance does not exist (since α + β < 1 is
necessary for this), and that the conditional expectation of the conditional
variance at horizon s is equal to ωs + σ 2

t+1.1 Unless ω = 0, there is a trend in
Et (σ 2

t+s), which is not sensible for long-run forecasting.2

Diebold (1986), in his discussion of Engle and Bollerslev (1986), briefly
mentions that the high persistence of conditional variances may be provoked by
overlooking changes in the conditional variance intercept ω. The intuition for
this is that changes in ω (or σ 2) induce nonstationarity, which is captured by high
persistence. Lamoureux and Lastrapes (1990) document empirically this idea and
show it to be plausible by Monte Carlo (MC) simulation, while Hillebrand
(2005) provides a theoretical proof. Another possible type of change is in the
persistence itself, as suggested by the results in Table 1.2 for some periods.

The GJR-GARCH equation (Eq. 1.4) has an undesirable drawback linked
to the way it models the leverage effect for stocks (γ > 0). It implies that
conditional variances persist more strongly after a large negative shock than after
a large positive shock of the same magnitude (β + α + 0.5γ >β + α). This
is somehow in disagreement with the view that after the October 87 crash,
the volatility in US stock markets reverted swiftly to its precrash normal level.
Evidence of this based on implied volatilities from option prices is provided by
Schwert (1990) and Engle and Mustafa (1992).

All this has promoted the development of more flexible GARCH models,
in particular, models allowing for changing parameters. There are many ways to
do this, and somewhat arbitrarily, we present a selection of existing models into
three classes.

1-Component and smooth transition models. Component models are based
on the idea that there is a long-run component in volatilities, which changes
smoothly, and a short-run one, changing more quickly and fluctuating around
the long-run component. The components may be combined in an additive way
or in a multiplicative way. The component model of Engle and Lee (1999) is
additive and consists of the equations

σ 2
t = qt + β(σ 2

t−1 − qt−1) + α(ε2
t−1 − qt−1), (1.7)

qt = σ 2 + ρqt−1 + φ(ε2
t−1 − σ 2

t−1), (1.8)

1From the GARCH(1,1) equation, one gets that Et (σ 2
t+s) = ω + (α + β)Et (σ 2

t+s−1), hence
Et (σ 2

t+s) = ω
∑s

i=1(α + β)i−1 + (α + β)sσ 2
t+1. If α + β < 1, this tends to σ 2 as s tends to

∞, but if α + β = 1, this diverges because of the linear trend.
2The RiskMetrics model (J.P. Morgan, 1996) sets ω = 0 in addition to α + β = 1 and α = 0.94
for daily returns. Thus, it avoids the trend but implies forecasts that stay at the level of date t.
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where β, α, σ 2, ρ, and φ are parameters. If φ = ρ = 0 and α + β < 1, the
equations above are equivalent to the GARCH(1,1) equation (Eq. 1.2), where
ω = σ 2(1 − α − β). If φ and ρ differ from 0, qt is an AR(1) process with 0
mean error ε2

t−1 − σ 2
t−1 (an m.d.s.). If ρ = 1, Equation 1.8 has the IGARCH

format of Equation 1.6. The equation for σ 2
t is a GARCH(1,1) allowing for

volatility clustering around the component qt that evolves more smoothly than
the σ 2

t component if ρ >α + β, which justifies the interpretation of qt as long-
run component. If moreover ρ < 1, the forecasts of both qt and σ 2

t converge
to σ 2/(1 − ρ) as the forecast horizon tends to infinity. By combining the
Equations 1.7 and 1.8, the model is found to be equivalent to a GARCH(2,2).
In an application to the daily S&P 500 returns over the period 1971–1991,
Engle and Lee (1999) do not reject the hypothesis that the qt component is
integrated (ρ̂ = 0.9982), and that shock effects are stronger on σ 2

t than on
qt (α̂ = 0.089 > φ̂ = 0.032), while β̂ = 0.80, such that the persistence of the
short-run component (α̂ + β̂ = 0.89) is much lower than for the long-run one.
However, the slowly moving component qt reverts to a constant level (assuming
ρ < 1), a feature that does not fit to the viewpoint that the level of unconditional
volatility can itself evolve through time, as suggested by the different subsample
estimates of σ 2 in Table 1.2. A related additive component model is put forward
by Ding and Granger (1996), where the conditional variance is a convex linear
combination of two components: σ 2

t = wσ 2
1,t + (1 − w)σ 2

2,t . One component is a
GARCH(1,1)—σ 2

1,t = ω1 + β1σ
2
1,t−1 + α1ε

2
t−1 —and the other is an IGARCH

equation—σ 2
2,t = (1 − α2)σ 2

2,t−1 + α2ε
2
t−1. The restriction to IGARCH form

with 0 intercept is necessary for identifiability. Bauwens and Storti (2009) extend
this model by letting the fixed weight w become time-varying and specifying wt
as a logistic transformation of σ 2

t−1. This allows to relax the restriction that one of
the components must be integrated. That model is close to a smooth transition
GARCH (STGARCH) model. In a STGARCH model, the parameters of the
GARCH equation change more or less quickly through time. For example, to
allow for a change of the intercept, ω in the GARCH(1,1) equation is replaced
by ω1 + ω2G(εt−1), where G() is a ‘‘transition’’ function taking values in [0, 1].
For example, if G(εt−1) = {1 + exp[−γ (εt−1 − κ)]}−1, the intercept is close to
ω1 if εt−1 is very negative and to ω2 if it is very positive. The parameter γ is
restricted to be positive and represents the speed of the transition; if it is large,
the transition function is close to a step function jumping at the value of κ . The
parameter κ represents the location of the transition. Smooth transition models
are presented in detail in Chapter 2 by Teräsvirta (2012) in this Handbook.
Multiplicative component models are briefly discussed below and in more detail
in Chapter 9 by Brownlees et al. (2012b) in this Handbook.

2-Mixture and Markov-switching models. The log-likelihood function of
the component model of Ding and Granger (1996) is of the type of Equation
1.5, so that estimation is not complicated. A mixture model is also based
on two (or more) variance components σ 2

i,t = ωi + βiσ
2
i,t−1 + αiε

2
t−1 (for i =

1, 2) that appear in a mixture of two Gaussian distributions. It is assumed
that εt |Ft−1 ∼ wN (μ1, σ 2

1,t ) + (1 − w)N (μ2, σ 2
2,t ). The means of the Gaussian
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distributions are related by wμ1 + (1 − w)μ2 = 0 to ensure that the mixture
has a null expectation. This model is a particular ‘‘mixed normal GARCH’’
(MN-GARCH) model, see Haas et al. (2004a) for several extensions. One
interpretation of it is that there are two possible regimes: for each t, a binary
variable takes one of the values 1 and 2 with respective probabilities of w and
1 − w. Once the regime label is known, the model is a GARCH(1,1) with
given mean. One regime could feature a low mean with high variance (bear
market) and the other a high mean with low variance (bull), for example,
if μ1 < μ2 and ω1/(1 − β1 − α1) >ω2/(1 − β2 − α2). Haas et al. (2004a)
derive the existence conditions for the fourth-order moments of MN-GARCH
models. In the model described above, the unconditional variance exists if
w(1 − α1 − β1)/(1 − β1) + (1 − w)(1 − α2 − β2)/(1 − β2) > 0, so that it is
not necessary that αi + βi < 1 holds for i = 1 and i = 2. If w = 1, the model
reduces to the GARCH(1,1) case and the previous condition to α1 + β1 < 1.
The model is useful to capture not only different levels of variance (according
to the regimes) but also unconditional skewness and kurtosis, since a mixture
of Gaussian densities can have such features. In an application to a series of
NASDAQ daily returns over the period 1971–2001, for two components,
the ML estimates are ŵ = 0.82, μ̂1 = 0.09, α̂1 = 0.05, β̂1 = 0.92, μ̂2 =
−0.42, α̂2 = 0.51, and β̂2 = 0.73. These values are in agreement with the
interpretation suggested above of bull and bear regimes. The second regime
thus has α̂2 + β̂2 > 1, yet the variance existence condition holds. The estimates
imply a variance level equal to 0.53 in the first variance process and 1.74 in the
second, thus on average 1.06. The single regime GARCH(1,1) Gaussian ML
estimates are α̂ = 0.12, β̂ = 0.87, and σ̂ 2 = 0.99. The likelihood ratio statistic
is about 140, indicating a much better fit of the MN-GARCH model with two
components.

The idea that the regime indicator variables that are implicit in the MN-
GARCH model are independent through time does not seem realistic. Intuitively,
if the market is bullish, it stays in that state for a large number of periods and
likewise if it is bearish. Thus, some persistence is likely in each regime. Following
the idea of Hamilton (1989), this is modeled by assuming that the regime
indicator variables are dependent, in the form of a Markov process of order 1.
Thus, once in a given regime, there is a high probability to stay in the same
regime and a low to move to the other regime. This idea can be combined with
the existence of two different means and conditional variance processes within
each regime, as in the MN-GARCH model (the extension to more than two
regimes is obvious). Haas et al. (2004b) develop this type of Markov-switching
GARCH model. This model is much easier to estimate than a Markov-switching
model featuring path dependence. Such a model is defined by assuming that the
parameters of the GARCH equation change according to a Markov process. Let
st denote a random variable taking the values 1 or 2 in the case of two regimes.
Then, if εt (st ) = σt (st )zt and σt (st )2 = ωst + αst εt−1(st−1)2 + βst σt−1(st−1)2, the
model features path dependence. This means that to compute the value of the
conditional variance at date t, one must know the realized values of all sτ for
τ ≤ t. Since the st process is latent, the realized values are not known and thus for
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estimation by ML, these variables must be integrated out by summation over 2t

possible paths (K t for K regimes). This renders ML estimation infeasible for the
sample sizes typically used in volatility estimation. Notice that path dependence
does not occur if βst = 0 for all possible values of st , that is, in the ARCH case,
see Cai (1994) and Hamilton and Susmel (1994). However, Bayesian estimation
of a Markov-switching GARCH model using a MCMC algorithm is feasible,
as shown by Bauwens et al. (2010). Chapter 3 by Haas and Paolella (2012) in
this Handbook presents in detail the mixture and Markov-switching GARCH
models and contains empirical illustrations.

3-Models with a changing level of the unconditional variance. The models
in the previous classes (when stationary) have a constant level of unconditional
variance even if they let the conditional variances fluctuate around a changing
level. This moving level changes smoothly in the model of Engle and Lee (1999),
and it changes abruptly in a Markov-switching GARCH model whenever there is
a switch. In the third class discussed hereafter, the models are nonstationary since
the unconditional variance is time-varying. The level of the unconditional vari-
ance is captured either by a smooth function or by a step function, independently
of the short-run GARCH dynamics.

The models of Engle and Rangel (2008) and Amado and Teräsvirta (2012)
let the unconditional variance change smoothly as a function of time.3 In their
models, Equation 1.1 is extended by including a factor τt multiplicatively, as
follows:

εt = τtσt zt . (1.9)

In the spline-GARCH model of Engle and Rangel (2008), the factor τt is
an exponential quadratic spline function with k knots and is multiplied by a
GARCH component:

σ 2
t = (1 − α − β) + βσ 2

t−1 + α(εt−1/τt−1)2, (1.10)

τ 2
t = ω exp

(
δ0t +

k∑
i=1

δi[(t − ti−1)+]2

)
, (1.11)

where β, α, ω, and δi are parameters for i = 0, 1, . . . , k, x+ = x if x > 0 and 0
otherwise, and {t0 = 0, t1, . . . , tk−1} are time indices partitioning the time span
into k equally spaced intervals. The specification of σ 2

t may be chosen among
other available GARCH equations4 with an adapted identification constraint
for the intercept (e.g., 1 − α − β − γ /2 for the GJR-GARCH(1,1) equation
and a symmetric distribution for zt ). Given this type of constraint on the
constant of the GARCH equation, it is obvious that Var(εt ) = τ 2

t , so that
the τ 2

t component is interpretable as the smoothly changing unconditional
variance, while σ 2

t is the component of the conditional variance capturing the

3Another model with this feature is the STGARCH model where the variable triggering the
transitions is the index of time, see Section 2.4.7 in Chapter 2 Teräsvirta (2012) in this Handbook.
4Notice that εt−1 is divided by τt−1 in Equation 1.10.
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clustering effect. The model of Amado and Teräsvirta (2012) uses a transition
function type of functional form for τt , see Section 8 of Teräsvirta (2012)
in this Handbook for more details. Baillie and Morana (2009) put forward
an additive model where the unconditional variance component τ 2

t evolves
smoothly via another type of function known as the Fourier flexible form, given
by ω + ∑k

i=1[γi sin(2π it/T ) + δi cos(2π it/T )]. The GARCH component of
their model is a fractionally integrated one (FIGARCH) that is useful to capture
a long-memory aspect in squared returns, see Baillie et al., (1996). Table 1.4
shows the ML estimates of the spline-GARCH model with three knots for the
period January 2006 to mid-July 2011, and Figure 1.4 displays the estimated
spline component, which clearly reflects the volatility bump due to the financial

TABLE 1.4 Three Knot Spline-GARCH(1,1) ML
Estimates for S&P 500 Demeaned Returns for the Period
2006-01-03 Until 2011-07-14 (1393 Observations)

Parameter Estimate p-Value, %

ω 0.727 0.04

δ0 −4.432 39.7

δ1 21.48 8.50

δ2 −49.71 1.40

δ3 49.56 0.62

α 0.077 0.00

β 0.892 0.00

Results obtained with OxMetrics 6.20. Demeaned returns are defined as in
Table 1.1.
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FIGURE 1.4 Three knot spline-GARCH component and variance of change-point model
with two breaks of S&P 500 index demeaned returns, 2006-01-03/2011-07-14 (1393 observa-
tions).
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crisis of 2008 and anticipates the increase of the summer of 2011. The persistence
of the conditional variance component σ 2

t is estimated to be 0.97 versus 0.99 in
the simple GARCH(1,1) model (Table 1.2).

In Chapter 10 by Van Bellegem (2012) in this Handbook, more general
multiplicative models that feature nonstationarity are reviewed. The spline-
GARCH model is also briefly presented with an empirical illustration.

Models allowing sudden changes in the level of the unconditional variance
are scarce. The model of Amado and Teräsvirta (2012) has this feature if
the transition function becomes a step function (or a superposition of such
functions). He and Maheu (2010) propose a change-point GARCH model
based on the change-point modeling framework of Chib (1998). It is a Markov
switching model that excludes recurrent states: once in a given state, the time
series can only stay in it (with some probability) or move to the next state (with
the complementary probability). He and Maheu (2010) use this approach for
the univariate GARCH(1,1) model (with 0 mean and student errors), using
a particle filter for implementing Bayesian estimation. Applying such a model
(with Gaussian innovations) to the same data as for the spline-GARCH model
above and assuming two breaks, the estimated unconditional variance increases
from 0.43 to 3.22 on 2007-05-31 and decreases to 1.05 on 2010-12-10. This
is shown graphically by the piecewise constant line in Figure 1.4. The estimates
of α and β for the three successive regimes are (0.034, 0.900), (0.099, 0.890),
and (0.002, 0.753). For details on algorithms and model choice in this type of
models, see Bauwens et al. (2011).

1.2.1.5 Explanation of Volatility Clustering. According to financial theory,
the price of an asset should equal the expected present value of its future income
flows. An asset price then changes because the expectations of investors about
these future incomes change over time: as time passes, new information (news)
about these is released, which modifies the expectations. This explains why prices
and, hence, returns are random and therefore volatile. Volatility fluctuates over
time because the contents and the arrival rate of news fluctuate. For example, crisis
periods correspond to more news releases: in particular, bad news tend to happen
in clusters. Volatility clustering is thus due to clusters of arrivals of different types
of news. For a more extensive discussion, see Engle (2004). This fundamental
explanation is difficult to test empirically. For the example of the S&P 500
index returns, there are many types of news that might be relevant in different
importance: news affecting the constituent stocks (earnings announcements,
profit warnings, etc.) and the industries to which they belong, news affecting
the real activity of the US economy, news about the monetary policy... The
contents of these news must be measured. The way they affect volatility is
through expectations of many investors, raising an issue of aggregation. It is not
known how these expectations are formed, and it is likely that there is a degree of
heterogeneity in this process. Parke and Waters (2007) provide an evolutionary
game theory model based on heterogeneous agents, who form different types of
expectations and adjust these over time. The model is able to generate volatility
clustering.
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Thus, at best, a reduced form, partial, approach is feasible, that is, relating
volatility to some macroeconomic variables and news measures. Relevant papers
about the relation between macroeconomic variables and stock volatility include
Schwert (1989a, b) and Engle and Rangel (2008). In the latter, the authors use
the estimated unconditional variances (the τ 2 of Equation 1.11) of their spline-
GARCH model to compute time series of annualized estimates of volatilities for
different countries and relate them to macroeconomic variables through a panel
data model. Other authors study the impact of news announcements on the
intraday volatility of exchange rate returns using a GARCH model, by including
variables representing news occurrences and measurements (Degennaro and
Shrieves, 1997; Melvin and Yin, 2000; Bauwens et al., 2005).

1.2.1.6 Literature and Software. Extensive surveys of GARCH include
Bollerslev et al. (1992), Bera and Higgins (1993), Bollerslev et al. (1994),
Diebold and Lopez (1996), Pagan (1996), Palm (1996), Shephard (1996), Li
et al. (2002), Giraitis et al. (2006), Teräsvirta (2009), and Hafner (2008).
Introductory surveys include Engle and Patton (2001), Engle (2001, 2004), and
Diebold (2004). Introductory econometric textbooks briefly mention or explain
ARCH (see Stock and Watson (2007) and Wooldridge (2009)) intermediate
and advanced books provide more details (Hamilton, 1994; Greene, 2011; Tsay,
2002; Verbeek, 2008). Specialized books are Gouriéroux (1997), Francq and
Zakoian (2010), and Xekalaki and Degiannakis (2010). Andersen et al. (2009)
contains nine chapters on GARCH modeling.

Several well-known software for econometrics and statistics (EVIEWS,
OxMetrics, SAS, SPSS, STATA) contain menu-driven modules for GARCH
modeling, avoiding the need to program inference tools for applying GARCH
models. See Laurent (2009) for the OxMetrics documentation.

1.2.1.7 Applications of Univariate GARCH. Univariate GARCH models
are useful for financial applications such as option pricing and risk measurement.

Option pricing. We take the example of a European call option. Such an
option is an acquired right to buy a security (called the underlying) at a price (the
premium) set in advance (the exercise price) and at a fixed date (the maturity).
It is well known that the value of an option is a function of several parameters,
among which is the volatility of the return on the underlying security until the
maturity. According to the financial theory, see Cox and Ross (1976), ‘‘options
are priced as if investors were risk-neutral and the underlying asset expected
return were equal to the risk-free interest rate’’ (denoted by r below). This is
called ‘‘risk-neutral’’ pricing. Let CT

t denote the premium at t for maturity T ,
T − t thus being the time to maturity. Let PT be the random value of the
underlying security at T and K the exercise price. Then,

CT
t = e−r(T−t)EQ [max(PT − K , 0)] (1.12)

is the discounted expected cash flow of the option, where the expected value
is computed using Q , the ‘‘risk-neutral’’ probability distribution. So, CT

t is
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a function of r, T − t, K , and the parameters of Q , which determine the
variance of the return on the underlying. The risk-neutral density function
must have as expected return (until maturity) the risk-free interest rate, and its
variance must be the same as in the process generating the observed returns.
Duan (1995) showed that risk-neutralization cannot be used with a GARCH
model both for the unconditional variance and the conditional variance at all
horizons. He uses a ‘‘locally’’ risk-neutral probability for GARCH processes,
that is, for the one-step-ahead conditional variance. For the GARCH process
defined by Equations 1.1 and 1.2, where zt ∼ N (0, 1), the locally risk-neutralized
process is given by yt = r + vt , where vt = μt − r + εt is N (0, σ 2

t ) and σ 2
t =

ω + α(vt−1 − μt−1 + r)2 + βσ 2
t−1. The parameters of Q are denoted by θ and

consist of the parameters indexing μt in addition to (ω, α, β). Thus, denoting
CT

t = CT
t (r, K , θ ), the premium can be computed by numerical simulation if θ

is known or, in practice, replaced by an estimate. Given N simulated realizations
{PT ,i}N

i=1 of PT using the risk-neutralized process,5 CT
t (r, K , θ ) is estimated

by ĈT
t (θ ) = e−r(T−t) 1

N

∑N
i=1 max(PT ,i − K , 0). Bauwens and Lubrano (2002)

apply this procedure in a Bayesian setup, which makes it possible to compute a
predictive distribution of the premium and not only a point estimate as is the
case when θ is simply replaced by a point estimate. Such predictive distributions
have a positive probability mass at 0, corresponding to the probability that the
option will not be exercised, while the remaining probability is spread over the
positive values through a continuous density function. Among many others,
some references about option pricing in relation with GARCH models are Noh
et al. (1994), Kallsen and Taqqu (1998), Hafner and Herwartz (2001), and
Rombouts and Stentoft (2009).

Value-at-risk. The VaR of a financial position provides a quantitative
measure of the risk of holding the position. It is an estimate of the loss that may
be incurred over a given horizon, under normal market conditions, corresponding
to a given statistical confidence level. For example, an investor holding a portfolio
of stocks might say that the daily VaR of his trading portfolio is ¤5 million
at the 99% confidence level. That means there is 1 chance in 100 that a loss
>¤5 million will occur the next day under normal market conditions. Indeed,
the VaR is a quantile (the 1% quantile in the example above) of the probability
distribution of the position. The distribution can be, for example, the conditional
distribution implied by a GARCH model estimated at the date when the VaR
must be computed. The model is estimated using historical data of past returns
on the portfolio and provides a value of the 1% quantile of the next day return
distribution. Multiplying this quantile by the portfolio value gives the VaR
estimate.

Formally, assume that yt = μt + σt zt , where σt is defined by a GARCH
equation and zt ∼ N (0, 1). Let nα be the left quantile at α% of the N (0, 1)
distribution, and n1−α be the right quantile at α% (e.g., n1 = −n99 = −2.326).
The one-step-ahead VaR (computed at date t − 1) for a long position of

5Since PT = Pt
∏T

s=t+1(1 + ys), one must simulate sequentially the returns yt+1, yt+2, . . . , yT from
the risk-neutral GARCH process.
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¤1 is given by VaRt (α) = μt + nασt . For a short position, VaRt (1 − α) =
μt + n1−ασt . In practice, the GARCH model is estimated with data until date
t − 1, and μt and σt are replaced by their one-step-ahead forecast in the VaR
formula. If we assume another distribution for zt , we use its quantiles. For
example, for a t-density with ν degrees of freedom, we replace ν by its ML
estimate and find the corresponding quantiles. Angelidis et al. (2004) evaluate
GARCH models for VaR and illustrate that the use of a t-density instead of a
Gaussian one improves VaR forecasts. Giot and Laurent (2003) show that the
use of a skewed-t instead of a symmetric distribution may be beneficial. VaR
forecasts are evaluated using statistical tests (Kupiec, 1995; Christoffersen 1998;
Engle and Manganelli, 2004).

1.2.2 MULTIVARIATE GARCH

Multivariate ARCH models appeared almost at the same time as univariate
models. Kraft and Engle (1982) was a first attempt, and Engle et al. (1984) put
forward a bivariate ARCH model, applied to the forecast errors of two competing
models of US inflation, so that their conditional covariance matrix adapts over
time. The move to financial applications was done by Bollerslev et al. (1988)
who also extended multivariate ARCH to GARCH. They used the capital asset
pricing model (CAPM) in the framework of conditional moments rather than
unconditional moments. The multivariate GARCH (MGARCH) model of that
paper, known as the VEC model , has too many parameters to be useful for
modeling more than two asset returns jointly. A natural research question was
then to design models that can be estimated for larger dimensions. Important
milestones are the BEKK model of Engle and Kroner (1995), the factor model
of Engle et al. (1990), and the constant conditional correlation (CCC) model
of Bollerslev (1990). The latter was followed 12 years later by the time-varying
correlation (TVC) model of Tse and Tsui (2002) and the dynamic correlation
model (DCC) of Engle (2002a).

In this section, we review briefly the conditional correlation models and
factor models. Chapter 4 by Sheppard (2012) in this Handbook is partly
complementary to what follows, since it contains more models and is oriented by
their use in forecasting. Some surveys and books cited in Section 1.2.1.6 cover
the topic of MGARCH models (Bollerslev et al., 1994; Hafner 2008; Francq
and Zakoian, 2010). More detailed and extensive surveys of MGARCH models
are those of Silvennoinen and Teräsvirta (2009) and Bauwens et al. (2006). The
discussion paper version of the latter (Bauwens et al. (2003)) includes a review
of applications of MGARCH models to asset pricing, volatility transmission,
futures hedging, Value-at-Risk, and the impact of financial volatility on the
level and volatility of macroeconomic variables. In Chapter 5 of this Handbook,
Hashmi and Tay (2012) apply factor models that not only allow for volatility
spillovers between different stock markets but also for time-varying skewness and
spillovers in skewness effects. Multivariate models can be used also for pricing
options that are written on more than a single underlying asset, so that their price
depends on the correlations between the assets (Rombouts and Stentoft, 2011).
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1.2.2.1 Structure of MGARCH Models. We denote by yt a column vector
of N asset returns, by μt the vector of conditional expectations of yt , and by
�t = (σtij) the conditional variance–covariance matrix of yt . The elements of μt
and �t must be measurable with respect to the σ -field Ft−1 generated by yt−j
for j ≥ 1 and possibly by other variables available at time t − 1. An MGARCH
model for yt is then defined by

yt − μt = εt = �1/2
t zt , (1.13)

where �
1/2
t is any square matrix such that �t = �

1/2
t (�1/2

t )′ and zt is an
unobservable random vector belonging to an i.i.d. process, with mean equal to 0
and variance–covariance equal to an identity matrix, E(zt) = 0 and Var(zt ) = IN .
It follows that �t = Var(yt |Ft−1) = Vart−1(yt ), so that Vart−1(εt ) = �t (note
that Et−1(εt ) = 0). The model is parametric and the definition is complete when
the pdf of zt is defined and the functional form of μt and �t is specified. These
functions are altogether indexed by a parameter vector of finite dimension. In
what follows, we assume that μt = 0 and concentrate on the specification of the
other elements.

Concerning the pdf of zt , the reference is the multivariate Gaussian, that is,
zt ∼ N (0, IN ), since it provides the basis of QML estimation as in the univariate
case. The quasi-log-likelihood function of a sample of T observed vectors yt
(altogether denoted by Y ) for a model defined by Equation 1.13 and for known
initial observation is

�T (θ; Y ) = −1

2

T∑
t=1

(log |�t | + ε′
t�

−1
t εt ), (1.14)

where θ denotes the vector of parameters appearing in μt , �t , and in the pdf
of zt (if any). Another choice of density for εt is the multivariate t. Multivariate
skewed distribution, such as the skewed-t of Bauwens and Laurent (2005), can
also be used. As in the univariate case, distributions with fat-tails and skewness
are usually better fitting data than the Gaussian, see Giot and Laurent (2003) for
an example in the context of Value-at-Risk evaluation.

1.2.2.2 Conditional Correlations. In conditional correlation models, what
is specified is the conditional variances σtii (equivalently denoted by σ 2

ti ) for i =
1, 2, . . . , N , and the conditional correlations ρtij for i < j and j = 2, 3, . . . , N .
The conditional covariance σtij is equal to ρtijσtiσtj . In matrix notations,

�t = DtRtDt , (1.15)

where Dt = diag(σt1, σt2, . . . , σtN ) is a diagonal matrix with σti as ith diagonal
element, and Rt = (ρtij) is the correlation matrix of order N (implying ρtii = 1
∀i and ∀t). The matrix �t is positive-definite if σ 2

ti is positive for all i and Rt is
positive-definite.
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With this approach, the specification of �t is divided into two independent
parts: a model choice for each conditional variance and a choice for the conditional
correlation matrix.6 Concerning the first part, an important simplification is
obtained in QML estimation if each conditional variance is specified as a
function of its own lags and the ith element of εt (denoted by εti), for example,
by a GARCH(1,1) equation written as

σ 2
ti = ωi + βiσ

2
t−1,i + αiε

2
t−1,i (1.16)

or any other univariate GARCH equation (Section 1.2.1). This type of model
excludes transmission (or spillover) effects between different assets, that is, the
presence of terms involving εt−1,j or σ 2

t−1,j for j 	= i in the previous equation.
To explain why the assumption of no spillovers simplifies the estimation of
conditional correlation models, we substitute DtRtDt for �t in Equation 1.14
to define ‘‘degarched’’ returns

ε̃t = D−1
t εt (1.17)

and split the likelihood function into two parts:

�T (θ; Y ) = −1

2

T∑
t=1

(
2 log |Dt | + log |Rt | + ε̃′

tR
−1
t ε̃t

)
(1.18)

= −1

2

T∑
t=1

(
2 log |Dt | + ε̃′

t ε̃t
)

(1.19)

− 1

2

T∑
t=1

(
log |Rt | + ε̃′

tR
−1
t ε̃t − ε̃′

t ε̃t
)
. (1.20)

It is clear that Equation 1.19 depends only on the parameters (denoted by
θV ) of the conditional variances that appear in Dt , while Equation 1.20 depends
on the whole θ that includes, in addition to θV , the parameters (denoted by θC )
of the conditional correlation matrix Rt . If there are no spillover terms in the
conditional variance equations, maximizing Equation 1.19 with respect to θV
provides a consistent and asymptotically normal estimator under usual regularity
conditions. Moreover, it is easy to see that Equation 1.19 itself can be split into
N functions that correspond to the quasi-log-likelihood functions of univariate

6A generalization of this model is the class of copula-MGARCH models. Such models are specified
by univariate marginal GARCH models for each asset, and a copula function capturing the
dependence between the different assets. If the margins are Gaussian and the copula is multivariate
Gaussian, the dependence is captured by the correlation matrix. Other copula function can be used
to model dependence in a more refined way, see Jondeau and Rockinger (2006) and Patton (2006a)
for examples. Chapter 12 by Heinen and Valdesogo (2012) in this Handbook reviews copula-based
volatility models.
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GARCH models.7 Once θV is estimated, its value can be injected in Equation
1.20 and the latter maximized with respect to θC . To do this, the term ε̃′

t ε̃t can
be neglected in Equation 1.20, since it does not depend on θC .

The separate estimation of each conditional variance model and of the
correlation model is the key to enable estimation of MGARCH models of
conditional correlations when N is large, where large means more than, say, 5.
The price to pay for this is the impossibility of including spillover terms in
the conditional variance equations. If spillover effects are included, one can, in
principle, maximize Equation 1.19 with respect to θV , and then Equation 1.20,
where θV is replaced by the previous estimate, with respect to θC . The first step
of maximization will be limited by the dimension of θV , which is of order N 2 if
all spillover terms are included in each conditional variance equation.

Models for Rt . Several specifications are available from the literature. The
challenge is to ensure that Rt be positive-definite and not depending on so many
parameters by which the model is not estimable. Bollerslev (1990) solves the
issue by setting Rt = R ∀t, that is, by assuming CCCs, where R is a correlation
matrix. Notice that R has N (N − 1)/2 parameters, but they can be estimated
easily even if N is large. It follows from Equation 1.18 that if Rt = R ∀t, and if
Dt is known, the ML estimator of R, given by

R̂ = 1

T

T∑
t=1

ε̃t ε̃
′
t , (1.21)

is consistent (under usual regularity conditions and if T > N ) and remains so if
Dt is replaced by a consistent estimator for all t (obtained by computing Dt using
the consistent estimator of θV resulting from the maximization of Equation1.19
as explained above). In finite samples, the diagonal elements of R̂ are not exactly
equal to 1, so that R̂ should be transformed to a correlation matrix. This is
done by replacing the elements of R̂t by ρ̂tij/

√
ρ̂tiiρ̂tjj . In matrix notation, the

transformed matrix is

R̃ = (IN 
 R̂)−1/2R̂(IN 
 R̂)−1/2, (1.22)

where the symbol 
 is the element by element multiplication operator (Hadamard
product).

The hypothesis of CCCs is not tenable except for specific cases and short
periods. Several tests of the null hypothesis of constant correlations exist: see
Longin and Solnik (1995), Tse (2000), Engle and Sheppard (2001), Bera and
Kim (2002a), and Silvennoinen and Teräsvirta (2005). The tests differ because
of the specification of the alternative hypothesis. Smooth transition-type CCC
models are proposed by Silvennoinen and Teräsvirta (2005) and Silvennoinen
and Teräsvirta (2007).

7If the GARCH equations are as in Equation 1.6, θV consists of the vectors (ωi βi αi), i =
1, 2, . . . , N .
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The CCC model has been generalized in different ways, so that the
conditional correlations change over time. One dynamic model of conditional
correlations is the TVC model of Tse and Tsui (2002). The dynamic process
generating Rt is specified as

Rt = (1 − α − β)R + βRt−1 + αSt−1, (1.23)

where β and α are scalar parameters, R is a constant correlation matrix parameter,
and St = (stij) is the correlation matrix computed from the past degarched returns
ε̃t−1, ε̃t−2, . . . , ε̃t−M , with M > N to ensure that St be positive-definite. Thus,
if R0 is a positive-definite correlation matrix, α and β are positive and satisfy
α + β < 1, Rt is a positive-definite correlation matrix for all t. By writing the
above constant part of Rt as (1 − α − β)R, R is interpretable as the expected
value of Rt . Hence R is estimated consistently by R̃ defined in Equation 1.22.
This can be used to ease estimation of the model when N is large: instead of
maximizing Equation 1.20 with respect to R, α, and β, we can replace R by
R̃ in Equation 1.20 and maximize it with respect to α and β, that is, only
two parameters instead of 2 + N (N − 1)/2. This procedure is called correlation
targeting (or tracking) and is unavoidable if N is large.

Another generalization of the CCC model is the DCC model of Engle
(2002a), who specifies the dynamic process on the variance–covariance matrix
of ε̃t , denoted by Qt , and transforms it to the correlation matrix Rt :

Qt = (1 − α − β)Q + βQt−1 + αε̃t−1ε̃
′
t−1, (1.24)

Rt = (IN 
 Qt )
−1/2Qt (IN 
 Qt )

−1/2. (1.25)

where β and α are scalar parameters and Q is a N × N symmetric and
positive-definite matrix parameter. If Q0 is symmetric and positive-definite
and β and α satisfy the same restrictions as in the TVC model above, Qt is
symmetric and positive-definite and Rt is a correlation matrix for all t. The
parameter matrix Q can be estimated by R̂ as defined in Equation 1.21 and
inserted in Equation 1.20 to ease estimation as explained for the TVC model.8

However, Aielli (2009) showed that the estimation of Q by R̂ is inconsistent
since E(ε̃t ε̃

′
t ) = E

(
E

(
ε̃t ε̃

′
t |Ft−1

)) = E (Rt) 	= E (Qt). He proposes a consistent
specification of Qt (cDCC, consistent DCC),

Qt = (1 − α − β)Q + βQt−1 + αPt ε̃t−1ε̃
′
t−1Pt , (1.26)

where Pt = diag
(

q1/2
t11 , q1/2

t22 , . . . , q1/2
tNN

)
= (IN 
 Qt )1/2, so that, by construc-

tion, Q is the unconditional variance–covariance matrix of Pt ε̃t . The available
empirical evidence suggests that the cDCC and DCC estimates are close to each
other.

8Sheppard (2012) in this Handbook (Section 4.4.6) reviews alternative estimation methods to the
maximization of Equation 1.20, which are especially useful when N is large.
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Although estimation for a large dimension is in principle feasible, it raises
problems. First, as one sees in Equation 1.18 directly, a large matrix (Rt ) has to
be inverted for each observation in the sample, which is time consuming for the
sample sizes typically used in applications, and may raise numerical difficulties
for large N . Even if estimation is done in two steps, based on Equation 1.20, with
or without correlation targeting, the same issue arises. A model that circumvents
this problem is the dynamic equicorrelation (DECO) model of Engle and Kelly
(2008). Secondly, Engle et al. (2008) show by simulation that the QML estimates
of α and β in the DCC model (estimated with correlation targeting) are subject
to a bias problem (toward 0) that is more and more acute as the dimension
N increases relative to the sample size T . The source of the problem seems to
be that when N approaches T , the estimator (Eq. 1.21) is ill-conditioned, as
it approaches a singularity. Better conditioned estimators can be built and are
useful to reduce the bias problem, see Hafner and Reznikova (2010b).

Both the TVC and DCC models extend the CCC model by making the
conditional correlations time-varying. Notice that a test of α = β = 0 can be
based on the Wald statistic to test the null hypothesis of CCCs. The fact that
only two additional parameters suffice to render the correlations time-varying is
very useful to deal with large dimensions, but of course, the price to pay is the
constraint that all the correlations have the same dynamic pattern. This may be
viewed as unrealistic. Several extensions of the DCC model have been proposed
to relax this constraint, at the price of introducing more parameters in the process
of Qt and thus being applicable only for moderate values of N (say up to 5 or 10
depending on the number of additional parameters): see Engle (2002a), Billio
and Caporin (2006), and Hafner and Franses (2009). Cappiello et al. (2006)
introduce asymmetric (‘‘leverage’’) effects in a DCC model. More extensions are
on the agenda of several researchers.

The conditional correlation models described above share the same feature:
that the conditional correlations revert to a constant level. Like for univariate
GARCH models, this is considered too restrictive for long data series. In
particular, the correlation level usually increases in periods of financial turbulence.
Thus, models that allow for a smoothly changing level of the correlations are
in development. The DCC-MIDAS model of Colacito et al. (2011) and the
factor spline-GARCH model for high and low frequency correlations of Rangel
and Engle (2009) are of this type. The latter is reviewed in Section 4.4.3 of this
Handbook.

1.2.2.3 Factor Models. Factor MGARCH models rest on the idea that the
volatilities of assets might be driven by a few common forces. This is related to
factor models in finance where excess returns of financial assets are related to
factors such as the market excess return in the CAPM or macroeconomic and
financial factors, though it should be noted that these models were developed
to explain the cross-section of returns rather than their time-series evolution. In
the MGARCH literature, the factor structure is a convenient way to reduce the
number of parameters with respect to the VEC and BEKK models. Basically,
the factor structure says that the unexpected excess return vector εt = yt − μt



24 CHAPTER 1 Volatility Models

(of N elements) is a linear function of p factors (with p < N ) collected in the
vector ft :

εt = Bft + νt , (1.27)

where B is a matrix of factor loadings, of dimension N × p and rank equal to
p, and νt is a white noise vector, called the indiosyncratic noise. Assuming that
Vart−1(νt ) = Var(νt ) = � with � of full rank, that Vart−1(ft ) = �t , and that
Cov(ft , νt ) = 0, the conditional variance–covariance matrix of εt is given by

�t = B�tB′ + �, (1.28)

which is positive-definite.
The specification is completed by a choice of an MGARCH process for �t .

The most simple choice is to constrain �t to be a diagonal matrix of univariate
GARCH processes, �t = diag(φ2

t1, φ2
t2, . . . , φ2

tp), as in Engle et al. (1990).9 Thus
if p = 1, this yields �t = BB′(ω1 + β1φ

2
t−1,1 + α1f 2

t−1,1) + �. If yt is a vector
of stock returns, the factor can be chosen as the market return. Another choice
is to take the factor as a linear combination of εt , denoted by λ′

1εt , where
λ1 is a vector of weights that can be estimated (after normalizing their sum
to unity). This model implies that the conditional variances of the unexpected
returns have the same dynamics. If λ1 is known, the number of parameters
to estimate is N + 3 + N (N + 1)/2. The N (N + 1)/2 elements of � can be
estimated by covariance targeting and injected in the (Gaussian) log-likelihood
to estimate the remaining parameters. If the factor is observed directly (such as
the market return), the parameters of its conditional variance can be estimated
in a preliminary step, as an univariate GARCH model.

One can add more factors provided some identification restrictions are
imposed, see Bauwens et al. (2006) for details. For two factors fti = λ′

iεt
(i = 1, 2), these restrictions are that B′

1λ2 = B′
2λ1 = 0, where Bi is the ith

column of B. It follows that the two factors have a constant conditional
covariance. The fact that factors are conditionally correlated can be viewed as a
drawback since they may catch similar features of the data. Several factor models
avoid this feature; the orthogonal GARCH (O-GARCH) model of Alexander
and Chibumba (1997), the generalized orthogonal GARCH model of van der
Weide (2002), the full factor GARCH model of Vrontos et al. (2003), and the
generalized orthogonal factor GARCH model of Lanne and Saikkonen (2007).
See the surveys of Bauwens et al. (2006) and Silvennoinen and Teräsvirta (2009)
for more information.

If the viewpoint is taken that the factors can be correlated, then a DCC
model can be chosen for the factor vector ft , for the idiosyncratic noise vector νt ,
or for the correlations between ft and νt . Engle (2009b) and Rangel and Engle
(2009) contain such extensions (in a single factor model) that enrich considerably
the conditional correlation structure of the factor model.

9If �t is not diagonal and the off-diagonal elements are constant, they can be absorbed in �.
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1.3 Stochastic Volatility

An alternative to GARCH-type models is the class of SV models, which postulate
that volatility is driven by its own stochastic process. For example, the standard
Gaussian autoregressive SV model in discrete time, as first introduced in this
form by Taylor (1982), is given by

yt − μt = εt = σt zt zt ∼ N (0, 1), (1.29)

log σ 2
t+1 = ω + β log σ 2

t + σuut , ut ∼ N (0, 1), (1.30)

and, in the standard case, the innovations zt and ut are independent. This
discrete time model can be thought of as the Euler approximation of an
underlying diffusion model,

dp(t) = σ (t)dW1(t), (1.31)

d log σ (t)2 = ω + φ log σ (t)2 + σudW2(t), (1.32)

where dp(t) denotes the logarithmic price increment (i.e., dp(t) = d log P(t)),
and W1(t) and W2(t) are two independent Wiener processes.

The major difference to GARCH models is that, conditional on the
information set Ft−1, volatility σ 2

t is not known but rather an unobserved
random variable. As we will see, this renders estimation and inference of SV
models more complicated than for GARCH models. On the other hand, SV
models have some advantages compared with GARCH models. For example,
SV models offer a natural economic interpretation of volatility, are easier to
connect with continuous-time diffusion models with SV, and are often found to
be more flexible in the modeling of financial returns.

The economic motivation is based on the so-called mixture-of-distributions
hypothesis, which states that financial returns are driven by a convolution of
two random variables as in Equation 1.29, one being an independent noise
term, the other a stochastic process representing an information arrival process.
For example, Clark (1973) uses trading volume as a proxy for the information
arrival process, while Tauchen and Pitts (1983) study the joint distribution
of returns and volume, which are driven by the latent information flow. A
common feature of models motivated by the mixture-of-distributions hypothesis
is that, conditional on the latent variable σt , returns follow a normal distribution:
εt |σt ∼ N (0, σ 2

t ). However, as σt is assumed to be a random variable, the
unconditional distribution of εt is no longer Gaussian but, in particular, has
fatter tails than the normal distribution, which corresponds to the empirical
evidence for financial returns.

While Clark (1973) and Tauchen and Pitts (1983) did not specify any
dynamics for the information flow process, Taylor (1982) was the first to
propose the popular model in Equation 1.30, where the logarithm of volatility
follows a first-order Gaussian autoregressive process. This allows, through a
positive parameter β, to model volatility clustering as in GARCH models, that
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is, alternating periods of high and low volatility. Moreover, because of the
simplicity of the model, stochastic properties such as stationarity, distributions,
or moments are straightforward to derive. For example, by Theorem 2.1 of
Andersen (1994), the stochastic process {εt} is strictly stationary (which in the
SV case is equivalent to covariance stationary) and ergodic if |β| < 1. This
contrasts with GARCH models, for which conditions for strict and covariance
stationarity do not coincide, although they do coincide for the EGARCH model.
Moreover, we know the unconditional distribution of log-volatility, given by
log σ 2

t ∼ N (ω/(1 − β), σ 2
u /(1 − β2)), which can, for example, be used to draw

initial values for σ 2
1 when simulating the model. It also implies that volatility

itself follows a log-normal distribution.
For the model in Equations 1.29 and 1.30, we can calculate the autocorre-

lation function of squared demeaned returns, ε2
t , and the kurtosis of εt (Ghysels

et al., 1996). They are given by, respectively,

ρ(τ ) = exp(σ 2
u /(1 − β2)βτ ) − 1

κ − 1
, (1.33)

κ = 3 exp(σ 2
u /(1 − β2)), (1.34)

which shows that, unless the error term of volatility is degenerate (i.e., σu = 0),
the kurtosis κ is strictly larger than 3, and returns have a leptokurtic or fat-tailed
distribution. Furthermore, the ACF ρ(τ ) decays exponentially with β. Both
properties are shared with GARCH-type models. However, Carnero et al. (2004)
show that the SV model in Equations 1.29 and 1.30 is more flexible than
the standard GARCH(1,1) model with Gaussian innovations in fitting kurtosis
and persistence of empirical autocorrelations of squared returns, although both
models have the same number of parameters. They attribute the often used
fat-tailed distributions for the innovations of a GARCH model to this lack-of-fit
of standard GARCH models, which requires adding additional parameters such
as the degrees of freedom parameter of a t distribution to better explain kurtosis
and persistence of empirical data. In the SV model, however, it is typically not
necessary to relax the normality assumption of innovations.

1.3.1 LEVERAGE EFFECT

The classical SV model in Equations 1.29 and 1.30 with independent error terms
zt and ut cannot take into account the leverage effect mentioned above, that is,
the effect that negative news tend to increase volatility stronger than positive
news. It is, however, possible to incorporate this effect in the standard model by
introducing a dependence between the two error terms. It turns out that there
are basically two ways of doing this, which is discussed in the following sections,
and the conclusion is that the second one should be preferred.

Jacquier et al. (2004) propose to let (zt , ut−1) follow a bivariate normal
distribution with correlation ρ. They propose estimation and inference methods
for this model in a Bayesian framework. A critique of this model, however, is the
fact that returns are no longer martingale difference sequences in the sense that
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E[εt |εt−1, σt−1] 	= 0, violating the efficient market hypothesis, see (Harvey and
Shephard, 1996).

As an alternative to introduce the leverage effect, Harvey and Shephard
(1996) propose to let (zt , ut ) follow a bivariate normal distribution with correla-
tion ρ. This makes a small but important difference: The two components of εt ,
that is, σt and zt , remain independent and, hence, εt has the martingale difference
property. Moreover, this model is the discrete time Euler approximation of the
diffusion model in Equations 1.31 and 1.32, where dW1(t)dW2(t) = ρdt. Yu
(2005) provides a comprehensive comparison of these two specifications of the
leverage effect in the SV model and concludes that, both from a theoretical
and empirical perspective, the model of Harvey and Shephard (1996) should be
preferred to that of Jacquier et al. (2004).

1.3.2 ESTIMATION

The estimation problem is certainly the main reason why GARCH models
have been more often used in empirical applications than SV models, although
much progress has been made over the last 15 years. While in GARCH models
the predictive density of returns depends on volatility, which is measurable
with respect to the information set, estimation by ML is straightforward.
Unfortunately, this is not the case for SV models, since the likelihood function
for a sample of T observations can be written as

L(θ; YT ) ∝
∫

f (YT |HT ; θ )f (HT |θ )dHT , (1.35)

where YT is a vector containing all observed returns, HT = (σ 2
1 , . . . , σ 2

T )′ is the
vector containing all latent volatilities, and θ is the parameter vector, which in
the classical model without leverage effect is θ = (ω, β, σu)′. The problem is the
integral appearing in Equation 1.35, which is a multiple integral of dimension
T . It cannot be solved analytically, and direct numerical methods are infeasible
even for moderately large samples. Other techniques have to be employed, and
this is what we discuss in the following paragraphs.

Chapter 6 by Bos (2012) in this handbook gives a broad overview of existing
estimation methods of the standard univariate SV model, emphasizing the
relationship between them and providing an empirical comparison. Estimation
methods of SV models can be roughly categorized into moment methods and
simulation methods, where the former are often simpler but inefficient, while
the latter attempt to achieve a close approximation of the likelihood function
through computationally expensive simulation methods.

Let us first discuss some estimators based on moment expressions. If only
the estimation of the model parameter θ is of interest but not the filtration of
the underlying volatility process, then simple moment-based estimators can be
used based, for example, on the moments given in Equations 1.33 and 1.34.
Even closed-form estimators for θ are available, see (Taylor, 1982; Dufour and
Valéry, 2006; Hafner and Preminger, 2010), which however are quite inefficient.
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Generalized method of moment (GMM) estimators have been proposed, for
example, by Melino and Turnbull (1990) and Andersen and Sorensen (1996).

Harvey et al. (1994a) propose a QML estimator based on the linear state
space representation of model (Eqs. 1.29 and 1.30), whose measurement equation
is given by log ε2

t = log σ 2
t + ξt and transition equation for the volatility state

variable given by Equation 1.30. If ut ∼ N (0, σ 2
u ), then the noise term ξt = log u2

t
has a highly skewed log chi-square distribution, which Harvey et al. (1994a)
approximate by a Gaussian distribution with the same mean and variance. On
the basis of this Gaussian linear state space model, they obtain a QML estimator
for θ and filtered and smoothed estimates of volatility by using the Kalman filter.
While this approach is simple and straightforward to implement, it is not fully
efficient because of the skewness of ξt .

The influential paper by Kim et al. (1998) extends the approximation of the
log chi-squared error term ξt to a Gaussian mixture with unobserved mixture
weights. Since volatility depends on these latent state variables, the resulting state
space model is no longer linear and the Kalman filter cannot be used directly as in
Harvey et al. (1994a). Kim et al. (1998) propose to use a Bayesian Markov Chain
MC algorithm with data augmentation. For given sampled mixture weights, the
state space model is again linear and Kalman filtering can be employed in the
estimation and inference procedure. Omori et al. (2007) extend the approach of
Kim et al. (1998) to allow for the leverage effect.

Turning to the second category of estimation methods, those based on
simulation to approximate as close as possible the likelihood function of the
model, Bos (2012) emphasizes importance sampling methods in which much
progress has been made recently. Early examples of estimation by simulated
ML are Danielsson (1994), Durbin and Koopman (1997), and Sandmann and
Koopman (1998). The basic idea of importance sampling, as first used in the SV
context by Durbin and Koopman (1997), is to approximate the likelihood func-
tion given in Equation 1.35 by the simulation mean of f (YT , H (i)

T ; θ )/g(H (i)
T ),

where the ith sequence of volatilities, H (i)
T , is drawn from the approximating

importance density g(HT ). Extensions of the basic importance sampling esti-
mator of Durbin and Koopman (1997) have been proposed, for example, the
efficient importance sampler (EIS) of Liesenfeld and Richard (2003) and Richard
and Zhang (2007). The alternative methods differ in the way they construct the
importance density g(HT ), which depends on auxiliary parameters.

Bos (2012) discusses other estimation techniques such as simulated method
of moments as in Gallant and Tauchen (1996) or the multimove sampler of
Shephard and Pitt (1997). Methods based on MCMC and particle filtering are
more extensively reviewed in Broto and Ruiz (2004) and Andersen (2009). In
this case, estimation and inference is typically investigated in a Bayesian context,
the earliest example being Jacquier et al. (1994).

1.3.3 MULTIVARIATE SV MODELS

As for multivariate GARCH models, the variety of multivariate stochastic volatil-
ity (MSV) models is remarkable, ranging from a rigid model with independent
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volatilities and constant correlations to highly complex models incorporating
dynamic correlations and leverage effects. A review of proposed MSV models is
given by Asai et al. (2006), see also Yu and Meyer (2006).

The basic model due to Harvey et al. (1994a) can be written as

εt = H 1/2
t zt , zt ∼ N (0, �z), (1.36)

Ht = diag(exp(h1t ), . . . , exp(hNt ), (1.37)

ht+1 = ω + β 
 ht + ut , ut ∼ N (0, �u), (1.38)

where ht = (h1t , . . . , hNt )′ is the vector of volatilities, ω and β are (N × 1)
parameter vectors, �z is a correlation matrix, and 
 designates the Hadamard
(elementwise) product operator. Note that, since �z is constant, the model is
similar to the CCC model of Bollerslev (1990) discussed above. As a straightfor-
ward extension of univariate SV models, Harvey et al. (1994a) propose to use
QML with the Kalman filter to estimate this model, while Danielsson (1998)
uses simulated ML methods. Obviously, the model may be too restrictive since
correlations are restricted to constants, there is no Granger causality in volatilities
and leverage effects are not present. However, it is a reasonable starting point
and extensions are usually encompassing this basic model.

According to the empirical analysis of Yu and Meyer (2006), the two most
successful models to explain volatilities and correlations of a bivariate exchange
rate series were explicitly taking into account temporal variation of correlations.
The first of these two is a model similar in spirit to the DCC-GARCH model of
Engle (2002a) discussed above and can be written as

εt = H 1/2
t zt , zt ∼ N (0, �z,t ), (1.39)

�z,t = diag(Q−1/2
t )Qtdiag(Q−1/2

t ), (1.40)

Qt+1 = S 
 (ιι′ − A − B) + B 
 Qt + A 
 vtv′
t , (1.41)

vt ∼ N (0, IN ),

where ι = (1, . . . , 1)′. Restricting A, B, and (ιι′ − A − B) to be positive-definite
will ensure that Qt is positive-definite and, hence, �z,t is a valid correlation
matrix. The volatilities are given as in Equations 1.37 and 1.38.

The second possibility to allow for TVCs is a factor-type SV model of the
form

εt = Dft + zt , zt ∼ N (0, �z,t ), (1.42)

ft = exp(ht/2)ηt , ηt ∼ N (0, 1), (1.43)

ht+1 = ω + βht + ut , ut ∼ N (0, σ 2
u ), (1.44)

where D = (δ1, δ2, . . . , δN ) and zt , ηt , ut are mutually independent. For
identification, one usually imposes δ1 = 1. The common factor ft captures
comovements in volatilities. In a bivariate framework, Yu and Meyer (2006)
estimate this factor model using Bayesian MCMC, while Liesenfeld and
Richard (2003) use the EIS in a frequentist approach. Note that the model
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(Eqs. 1.42–1.44) has much less parameters than the DCC-SV model in
Equations 1.39–1.41. However, it may again be quite restrictive. For example,
in the bivariate case, it is straightforward to show that conditional on the factor
volatility, the correlation coefficient is given by

Corr(ε1t , ε2t |ht ) = δ√
(1 + σ 2

z1 exp(−ht ))(δ2 + σ 2
z2 exp(−ht ))

,

which depends on δ and ht . Clearly, as ht increases, correlations increase as
well, which corresponds to empirical findings, but the functional form of the
dependence between volatilities and correlations might be too rigid in many cases.

Omori and Ishihara (2013), in this handbook, propose very general forms of
MSV models that allow, for example, for leverage effects, cross-leverage effects,
and heavy-tailed innovation distributions. Their factor MSV model extends the
model in Equations 1.42–1.44 to multiple factors, while estimation is performed
using Bayesian MCMC based on the multimove sampler of Kim et al. (1998),
see also Omori et al. (2007) and Omori and Watanabe (2008).

1.3.4 MODEL SELECTION

Caporin and McAleer (2012), in this handbook, give a survey of recent advances
in model selection in the context of volatility models. GARCH and SV models
are not nested, which renders the choice based on statistical criteria nontrivial.
If the problem is to choose between the exponential GARCH model of Nelson
(1991b) and the standard SV model, then an encompassing model could be
specified such as

log σ 2
t+1 = ω + α1zt + α2|zt | + β log σ 2

t + σuut ,

see Danielsson (1994) and Fridmann and Harris (1998). The SV model results if
α1 = α2 = 0 and the EGARCH model if σu = 0. For the latter case, Kobayashi
and Shi (2005) propose a Lagrange Multiplier test. Furthermore, one can test for
the leverage effect by testing the hypothesis α1 = 0.

Choosing between GARCH and SV models can be more complicated since
standard model selection criteria such as BIC or Bayesian posterior odds are
inconsistent (Hong and Preston, 2005). Several approaches have been proposed
to address this problem. Franses et al. (2008) suggest to augment the GARCH
model by a contemporaneous stochastic error term, whose variance collapses
to 0 if the true model is standard GARCH. Under the alternative of nonzero
variance, the resulting model is a variant of an SV model but not equivalent to
the standard SV model. Hafner and Preminger (2010) propose a set of simple,
strongly consistent decision rules to choose GARCH or SV. Their selection
procedure is based on a number of moment conditions that is allowed to increase
with the sample size. This method leads to choosing the best and simplest model
with probability 1 as the sample size increases.



1.3 Stochastic Volatility 31

Furthermore, statistics of standard tests such as likelihood ratio have non-
standard distributions (Vuong, 1989). Kim et al. (1998) propose an algorithm
based on simulations to obtain empirical p-values of testing one model against the
other, which might be inconclusive when hypotheses are reversed. Caporin and
McAleer (2012) then continue by giving an extensive review of out-of-sample
comparisons, an area with a lot of new results.

1.3.5 EMPIRICAL EXAMPLE: S&P 500

We give a small illustration of estimation results for the daily returns of the S&P
500 index over the period 2006-07-14 until 2011-07-14 (1260 observations).
This series was analyzed above using an asymmetric GARCH model, and the
leverage effect was found to be highly significant. We therefore would like to
allow for leverage effects, also in the SV model. To estimate the SV model,
we choose a Bayesian framework and use the MCMC algorithm of Omori
et al. (2007).10 First, the algorithm also relaxes the assumption of normality
of the innovation term zt , which however in our case did not turn out to be
necessary: The estimated posterior mean of the degrees of freedom parameter of
a t-density is 22.8 with a large 95% confidence interval given by [15.71, 31.89],
so that we decided to use the normal distribution for simplicity. We estimate a
reparametrized version of model (Eqs. 1.29 and 1.30),

εt = σt zt , (1.45)

log σ 2
t+1 = μ + β(log σ 2

t − μ) + σuut , (1.46)(
zt
ut

)
∼ N

(
1 ρ

ρ 1

)
, (1.47)

where μ = ω/(1 − β). Prior distributions are chosen similar to Omori et al.
(2007) as (β + 1)/2 ∼ β(20, 1.5), σ−2

u ∼ �(5/2, 0.025), (ρ + 1)/2 ∼ β(1, 1)
and μ ∼ N (−10, 1). For the MC sampler, 5500 draws of the posterior distri-
bution are obtained, and the first 500 are discarded as in Omori et al. (2007).

Table 1.5 shows the estimation results for the posterior distributions of the
parameters. It is quite common to find that the persistence parameter β is close to
1, which is again the case here. Remarkably, however, the correlation parameter
ρ is strongly negative with a posterior mean of −0.7263, which is probably due
to the financial crisis present in the sample. Previous precrisis studies such as Yu
(2005) find that correlation is significantly negative but much smaller in absolute
value, of the order −0.3 to −0.5. This may indicate that the leverage effect
depends on time and, in particular, the state of the economy. The last column
of Table 1.5 reports the inefficiency factor defined as 1 + 2

∑∞
i=1 ρi, where ρi is

the sample autocorrelation of order i of the sampled parameter. The small values
compared with Kim et al. (1998) indicate the efficiency of the employed sampler

10An OxMetrics program is available at http://jnakajima.web.googlepages.com.
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TABLE 1.5 Posterior Statistics of SV Parameters Estimated for S&P500
Returns

Parameter Mean Standard Deviation 95%L 95%U Inef.

β 0.9777 0.0050 0.9670 0.9868 4.23

σu 0.2030 0.0244 0.1593 0.2560 7.14

exp(μ/2) 0.0117 0.0011 0.0097 0.0140 1.15

ρ −0.7263 0.0694 −0.8435 −0.5789 7.07
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FIGURE 1.5 (a) S&P 500 index returns, July 14, 2006 to July 14, 2011. (b) Posterior mean
of log-volatilities.

(Omori et al., 2007). Figure 1.5 shows the index returns and the posterior means
of log-volatilities.

1.3.6 LITERATURE

As the research on the modeling, estimation, and inference of SV models,
especially in the multivariate case, is huge and still growing, our account can only
be partial. We refer to more extensive reviews of the subject: An early monograph
that discusses in detail the SV model is given by Taylor (1986). Andersen
(1994) is an early review of discrete and continuous time SV models and their
applications in finance. Some computational aspects of estimation and inference
in SV models are discussed in Bauwens and Rombouts (2004). Shephard (2005)
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is a collection of important papers on SV, Broto and Ruiz (2004) provides a
review of estimation methods in SV models, whereas Andersen (2009) gives a
general review with particular focus on continuous-time SV models and their
link with realized volatility measures, to be discussed in the next section.

1.4 Realized Volatility

The models described in the previous sections are essentially parametric and
usually designed to estimate the daily, weekly, or monthly volatility using
data sampled at the same frequency. Since French et al. (1987) and thanks
to the widespread availability of databases providing the intradaily prices of
financial assets (stocks, stock indices, bonds, currencies, etc.) econometricians
have considered using data sampled at a very high frequency to compute ex-post
measures of volatility at a lower frequency.

1.4.1 REALIZED VARIANCE

This method has been popularized by several authors, including Andersen,
Barndorff-Nielsen, Bollerslev, Diebold, and Shephard, and is known as realized
volatility approach.

It is clear that the trading and pricing of securities in many of today’s
liquid financial asset markets is evolving in a near continuous fashion throughout
the trading day. It is thus natural to think of the price and return series of
financial assets as arising through discrete observations from an underlying
continuous-time process.

The intuition behind realized volatility is most readily conveyed within the
popular continuous-time diffusion:

dp(t) = μ(t)dt + σ (t)dW (t), t ≥ 0, (1.48)

where dp(t) denotes the logarithmic price increment, where μ(t) is a continuous
locally bounded variation process, σ (t) is a strictly positive and càdlàg (right-
continuous with left limits) SV process and W (t) is a standard Brownian motion.

Assuming that the time length of 1 day is 1, what does model (Eq. 1.48)
implies for the one-period daily return? It follows immediately that

rt ≡ p(t) − p(t − 1) =
∫ t

t−1
μ(s)ds +

∫ t

t−1
σ (s)dW (s). (1.49)

From Equation 1.49, we see that the volatility for the continuous-time
process over [t − 1, t] is linked to the evolution of the spot volatility σ (t).
Furthermore, conditional on the sample path of the drift and the spot volatility
processes,

rt ∼ N
(∫ t

t−1
μ(s)ds, IVt

)
, (1.50)
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where IVt denotes the so-called integrated variance (volatility), and is defined as
follows:

IVt ≡
∫ t

t−1
σ 2(s)ds. (1.51)

It is clear from the above equation that IVt is latent because σ 2(s) is not
observable. GARCH and SV models typically infer IVt from a model that links
the daily volatility of day t to past realizations of the one-period daily returns,
that is, rt−1, rt−2, . . . This approach raises some natural questions:

• Which model to choose?

• How good is our GARCH/SV estimate of IVt ?

• By conditioning on past daily returns, do we not lose a significant part of the
available information by throwing away all the intraday returns (if intraday
data are available of course)?

One of the most popular measures to check the forecasting performance of
the volatility models is the Mincer-Zarnowitz regression, that is, ex-post volatility
regression:

σ̌ 2
t = a0 + a1σ̂

2
t + ut , (1.52)

where σ̌ 2
t is the ex-post volatility, σ̂ 2

t is the forecasted volatility, and a0 and a1 are
parameters to be estimated. Recall that if the model for the conditional variance
is correctly specified (and the parameters are known) and if E(σ̌ 2

t ) = σ̂ 2
t , we have

a0 = 0 and a1 = 1.
To judge the quality of the GARCH forecasts, econometricians first used

daily squared returns to approximate the ex-post volatility, that is, σ̌ 2
t = r2

t . The
R2 of this regression is used to measure the degree of predictability of the volatility
models. However, the R2 of the above regression is typically lower than 5% for
GARCH models and this could lead to the conclusion that GARCH models
produce poor forecasts of the volatility (see, among others, Schwert (1990) or
Jorion (1996)).

In their seminal paper, Andersen and Bollerslev (1998) have shown that if rt
follows a GARCH(1,1), for example, rt = σt zt with σ 2

t = ω + α1r2
t−1 + β1σ

2
t−1,

the R2 of this regression is nothing but var(σ̌ 2
t )

var(r2
t )

= α2
1

(1−β2
1 −2α1β1)

. If κ is the kurtosis

of the innovations zt , we have that κα2
1 + β2

1 + 2α1β1 < 1 to ensure the existence
of the unconditional kurtosis of rt . It follows then that κα2

1 < 1 − β2
1 − 2α1β1

and

R2 ≡ α2
1

(1 − β2
1 − 2α1β1)

<
1

κ
.

If zt is i.i.d N (0, 1), the R2 is thus necessarily lower than 1/3 (and even smaller if
zt has fat-tails).
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Let us now illustrate this result by means of a simple MC simulation. In
model (Eq. 1.48), σ (t) was deliberately let unspecified. The simulated model
is designed to induce temporal dependencies consistent with the GARCH(1,1)
model. We first consider the continuous-time GARCH diffusion of Nelson
(1991a). It is formally defined by

dp(t) = σ (t)dWp(t), (1.53)

dσ 2(t) = θ [ω − σ 2(t)]dt + (2λθ )1/2σ 2(t)dWd (t), (1.54)

where Wp(t) and Wd (t) denote two independent Brownian motions.
We used a standard Euler discretization scheme to generate the continuous-

time GARCH diffusion process, that is, p(t + �) = p(t) + σ (t)
√

�Zp(t) and

σ 2(t + �) = θω� + σ 2(t)
[
1 − θ� + √

2λθ�Zd (t)
]
, where Zp(t) and Zd (t)

denote two independent standard normal variables.
We set θ = 0.054, ω = 0.478, and λ = 0.480 to replicate the behavior

of the YEN-USD exchange rate during October 1987 to September 1992 like
in Andersen and Bollerslev (1998). To simulate exchange rates, we choose
� = 1/2880, corresponding to 10 observations per 5-min interval. The number
of simulated days is 510, but the first 10 days have been discarded, giving a
total of 500 simulated days. Furthermore, we use the following initial values for
the log-price and spot volatility: p(0) = 1 and σ 2(0) = 0.1. From the simulated
log-prices, we computed 5-min log-prices (denoted pt,i for i = 1, . . . , M = 288,
and t = 1, . . . , T ) by selecting 1 price for every 10 observations. Five-minute
returns rt,i are computed as the first difference of pt,i. Finally, daily returns rt are
defined as

∑M
i=1 rt,i.

Figure 1.6 graphs the simulated 5-min and daily returns for the above DGP.
Figure 1.7 plots four volatility measures computed on the simulated data.

Let us concentrate on three of these for the moment.

1. Panel (a) displays the daily integrated volatility, that is, IVt . Given the
fact that IVt ≡ ∫ t

t−1 σ 2(s)ds, the ‘‘daily’’ IVt is computed as
∑1/�

i=1 σ 2(t −
j/�)�, where 1/� = 2880. Recall that in empirical applications this
quantity is unknown.

2. Panel (c) displays the conditional variance obtained by estimating a
GARCH(1,1) model by Gaussian QML on the daily returns rt .

3. Finally, panel (d) plots the daily squared returns r2
t .

Two comments are in order.

• Even though the daily squared return is known to be an unbiased measure
of the daily volatility, this estimator is extremely noisy.

• Unlike the daily squared returns, the conditional variance of the
GARCH(1,1) is much less noisy. Indeed, it generally tracks the level of the
integrated volatility very well.
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FIGURE 1.6 Simulated 5-min and daily returns from a continuous-time GARCH(1,1).

We also run the above Mincer-Zarnowitz regression to illustrate the findings
of Andersen and Bollerslev (1998). When using the daily squared returns to
measure the observed daily volatility, the R2 of the regression is found to be
extremely low, that is, 7% even though a0 and a1 are not significantly different
from 0 and 1, respectively.

Naturally, this finding raises another question. Can we use the R2 of this
regression to discriminate between volatility models? Said differently, ‘‘is model
1 preferable to model 2 if the R2 of this regression is higher for model 1?’’. It is
not always true that using a conditionally unbiased proxy, such as r2

t , will lead
asymptotically to the same outcome that would be obtained if the true volatility
was observed. When the evaluation is based on a target observed with error,
such as r2

t , the choice of the evaluation criterion becomes critical in order to
avoid a distorted outcome. The problem of consistency, sometimes referred to as
robustness, of the ordering between two or more volatility forecasts is discussed
in Chapter 19 by Violante and Laurent (2012).

Note that if we consider the integrated volatility instead of the squared daily
returns as an ex-post volatility measure, the R2 now equals 53.3%, suggesting that
the GARCH model explains more than 50% of the variability of the true volatility
despite the fact that a large proportion of the data has been ignored. However, this
regression in unfeasible because IVt is not computable in practical applications.

Andersen and Bollerslev (1998) are the first to point out that a much
more precise ex-post estimator than the daily squared return can be obtained by
simply summing up intraday squared returns. They called this estimator-realized



1.4 Realized Volatility 37

0 100 200 300

(a)

(c) (d)

(b)

400 500

1

2

3

4

0 100 200 300 400 500

1

2

3

0 100 200 300 400 500

1

2

3

0 100 200 300 400 500

5

10

15

IV RV

Daily squared returns GARCH(1,1)

FIGURE 1.7 Four volatility measures: (a) integrated volatility; (b) realized volatility;
(c) GARCH(1,1) on daily returns; and (d) daily squared returns.

volatility.11 More formally, this estimator is defined as follows:

RVt =
M∑

i=1

r2
t,i. (1.55)

By summing high frequency squared returns, we may obtain an ‘‘error free’’
or ‘‘model free’’ measure of the daily volatility. This is illustrated in Figure 1.7.
Panel (a) displays the daily realized volatility computed from the simulated 5-min
returns, that is, RVt = ∑288

i=1 r2
t,i. It is clear from this graph that realized volatility

is indeed a very precise estimator of IVt . The correlation between IVt and RVt
equals 0.989.

We also computed the R2 of the Mincer-Zarnowitz regression using the
realized volatility as endogenous variable. Not surprisingly, the R2 is very close
to the value previously obtained for IVt , that is, 52.7% versus 53.3%.

The properties of this estimator are presented in detail in Chapter 13 by Park
and Linton (2012). The main findings of the literature are that under suitable
conditions (such as the absence of serial correlation in the intraday returns) the

11The origin of realized volatility is not as recent as it would seem at first sight. Merton (1980)
already mentioned that, provided data sampled at a high frequency are available, the sum of squared
realizations can be used to estimate the variance of an i.i.d. random variable.
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realized volatility is consistent for the integrated volatility in the sense that when
� → 0, RVt measures the latent integrated volatility IVt perfectly. However, in
practice, at very high frequencies, returns are polluted by microstructure noise
(bid-ask bounce, unevenly spaced observations, discreteness, etc.). This ‘‘errors-
in-variables’’ problem causes the high frequency returns to be autocorrelated.
Recall that bid-ask bounce occurs in all high frequency transaction data as
successive quotes tend to bounce between buys and sells, and sampling these
as proxies for the mid-price gives an impression that markets are moving more
than they actually are, adding an upward bias to the measured volatility. Note
that Chapter 14 by Ait-Sahalia and Xiu (2012) show how maximum-likelihood
estimators can be used to deal with the microstructure noise issue.

Empirical studies have shown that a continuous diffusion model as in
Equation 1.48 fails to explain some characteristics of asset returns. Furthermore,
standard GARCH models are not able to fully explain the excess kurtosis found
in most financial time series. In a continuous-time framework, the inadequacy
of the standard stochastic diffusion model has led to developments of alternative
models. Jump diffusion and SV models have been proposed in the literature to
overcome this inadequacy.

Suppose now that the log-price process belongs to the Brownian Semi-
Martingale with Jumps (BSMJ) family of models. Under the BSMJ model, the
diffusion component captures the smooth variation of the price process, while
the jump component accounts for the rare, large discontinuities in the observed
prices. Andersen et al. (2007) cite the work of several authors who found that
this is a realistic model for the price series of many financial assets.

A BSMJ log-price diffusion admits the representation

dp(t) = μ(t)dt + σ (t)dW (t) + κ(t)dq(t), t ≥ 0, (1.56)

where dq(t) is a counting process with dq(t) = 1 corresponding to a jump at
time t and dq(t) = 0 otherwise. The (possibly time-varying) jump intensity is
l(t) and κ(t) is the size of the corresponding jump.

Jumps in stock prices are often assumed to follow a probability law. For
instance, the jumps may follow a Poisson process, which is a continuous-time
discrete process.

Let us consider the following continuous-time GARCH diffusion process
with jumps,

dp(t) = σ (t)dWp(t) + κ(t)dq(t), (1.57)

dσ 2(t) = θ [ω − σ 2(t)]dt + (2λθ )1/2σ 2(t)dWd (t), (1.58)

κ(t) ∼ σ (t)
√

m([−2, −1] ∪ [1, 2]) (1.59)

dq(t) ∼ Poisson(l). (1.60)

The jump size κ(t) is modeled as the product between σ (t) and a uniformly
distributed random variable on

√
m([−2, −1] ∪ [1, 2]). Note that in this DGP,
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FIGURE 1.8 Four volatility measures in presence of jumps: (a) integrated volatility;
(b) integrated jumps; (c) realized volatility, GARCH(1,1) on daily returns; and (d) bipower
variation.

the intensity of the jumps (l) is assumed to be constant over time for simplicity.
The parameter m determines the magnitude of the jumps.

Figure 1.8 plots four volatility estimates for 500 days of simulated intraday
returns. The parameters of the continuous-time GARCH(1,1) are the same as
for the previous simulation. For the jump component, l is chosen such that first
jump is expected every 100 days (in this replication there are 8 days with at
least one jump). About the magnitude of the jumps, we chose m = 2, which
corresponds to a case of rare but very big jumps.

1. Panel (a) displays the daily integrated volatility, that is, IVt ;

2. Panel (b) displays the integrated jumps, defined as IJt = ∑
t−1<s≤t κ2(s).

Like IVt , this quantity is latent and cannot be computed on real data;

3. Panel (c) displays the realized volatility computed from 5-min returns;

4. Finally, panel (d) plots the so-called bipower variation estimator BVt (see
below).

It is clearly visible that the realized volatility does not match the integrated
volatility in presence of jumps. This result is not surprising since we know by the
theory of quadratic variation that for � → 0, we have the following convergence
in probability:

RVt →
∫ t

t−1
σ 2(s)ds +

∑
t−1<s≤t

κ2(s). (1.61)
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In other words, in the absence of jumps, the realized volatility is a consistent
estimator of the integrated volatility but not in the presence of jumps.

Several robust to jumps estimators of IVt are discussed in Chapters 17 and
18 by Mancini and Calvori (2012) and Boudt et al. (2012), respectively. The
pioneers are Barndorff-Nielsen and Shephard (Barndorff-Nielsen and Shephard
(2004b)), who showed that for a subclass of BSMJ price diffusions (i.e., BSM
with Finite Activity Jumps), the normalized sum of products of the absolute
value of contiguous returns (i.e., bipower variation) is a consistent estimator for
IVt . Mancini and Calvori (2012) also discuss the case of infinite activity jump
processes (Levy jumps).

The bipower variation is defined as

BVt ≡ μ−2
1

M
M − 1

M∑
i=2

|rt,i||rt,i−1|, (1.62)

where μ1 ≡ √
2/π � 0.79788.

Unlike the RVt , BVt is designed to be robust to jumps because its building
block is the product between two consecutive returns instead of the squared
return. If one of the returns corresponds to a jump and the next one follows the
BSM diffusion process, then the product has a small impact on BVt , being the
sum of many of these building blocks. If the jump process has finite activity12

then a.s. jumps cannot affect two contiguous returns for � → 0 (or equivalently
M → ∞) and the jump process has a negligible impact on the probability limit
of BVt , which coincides with the IVar. Under the BSM with finite activity jumps
(BSMFAJ), one has

plim�→0BVt =
∫ t

t−1
σ 2(s)ds. (1.63)

Looking at Figure 1.8d, we see that unlike RVt , BVt is indeed a robust
estimate of the integrated volatility in presence of jumps.

1.4.1.1 Empirical Application. The series we consider is the Dow Jones
index. We use a 5-min sampling frequency corresponding to seventy-eight 5-min
intraday price observations for each trading day (from 9:30 EST until the market
closes, i.e., at 16:00 EST). The data set covers the periods from 1995-01-03 to
2009-12-31. The Dow Jones index data is provided by the Tickdata.

Figure 1.9 plots the daily returns, realized volatility and bipower variation
for the Dow Jones index series computed from 5-min returns.

Figure 1.10 plots the autocorrelation function (50 lags) of these three series.
The displayed 95% confidence bands (doted lines) are computed with the
generalized Bartlett’s formula of Francq and Zakoian (2009). This figure clearly
suggests the presence of long memory in the realized volatility and bipower

12A jump process is defined to be of finite activity if the number of jumps in any interval of time is
finite.
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returns.
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variation but no serial correlation in the daily returns. The estimated long-
memory parameters given by the log-periodogram regression method of Geweke
and Porter-Hudak (1983) are equal to 0.28 and 0.33 for the realized volatility and
bipower variation, respectively, suggesting that BVt is slightly more persistent
than RVt (because of the presence of jumps in RVt , see Andersen et al. (2007)).

The next step is naturally to formulate a model to forecast RVt , and/or BVt
that takes into account their most important characteristics. ARFIMA models are
usually estimated on these two series (or their log-transformation to ensure the
positivity of the forecasts). Figure 1.11 plots log(BVt ) as well as the conditional
mean and conditional variance of an ARFIMA(1, d , 0)-GARCH(1, 1) estimated
by ML with a skewed-t distribution (see Giot and Laurent (2003) and Bauwens
and Laurent (2005) for more details on this distribution).

This figure suggests that this conditional mean captures the main features
of the series. Furthermore, the conditional variance is not constant over time,
suggesting that the variance of the variance is time-varying as well. Figure 1.11d
plots a histogram of the standardized residuals of the estimated model, together
with a kernel estimate (solid line) and the estimated (dotted line) of the
unconditional density of the standardized residuals. This graph also suggest that
the skewed-t density provides a good approximation of the true density (the
estimated asymmetry coefficient is positive and highly significant and the degree
of freedom is about 15).

In Chapter 15, Corsi et al. (2012) follow an alternative direction that
generates very similar stylized facts for volatility series using a cascade of
heterogeneous volatility components. This model leads to a simple AR-type
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FIGURE 1.11 Log of bipower variation, conditional mean, and conditional variance of an
ARFIMA(1, d , 0)-GARCH(1, 1) on log(BVt ) and density estimate of the innovations for the
Dow Jones index.
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FIGURE 1.12 Log of bipower variation, conditional mean of the ARFIMA(1, d , 0)-
GARCH(1, 1), and HAR models on log(BVt ) for the Dow Jones index.

model that considers volatilities realized over different time horizons and is
thus called heterogeneous autoregressive (HAR). This framework turns out to be
easier to handle than the above ARFIMA model, with a straightforward economic
interpretation and an excellent fit to the data.

Figure 1.12 plots log(BVt ) as well as the conditional mean of the above
ARFIMA(1, d , 0)-GARCH(1, 1) and the HAR model with a cascade of three
volatility measures, that is, the log of the average of BVt over the previous 1,
5, and 21 days. The difference between the fitted values of the ARFIMA and
HAR models is hardly visible. Indeed, both models seem to track the dynamics
of log(BVt ) rather well. The in-sample average of the errors equal 0.018871 and
1.2188e−14, respectively, for the ARFIMA and HAR models. The corresponding
standard deviations are 0.56977 and 0.57120. Both models explain respectively
68.8879% and 68.5991% of the variability of log(BVt ), while the correlation
between the fitted values (conditional mean) of the two models is 98.358%. The
two models are thus hardly distinguishable.

The HAR model and the ARFIMA model described above have something
in common. Both the endogenous and explanatory variables are aggregated
measures of volatility (e.g., realized volatility) or some transformation of these
measures (e.g., square root, log). Chapter 16 by Ghysels and Valkanov (2012)
reviews an alternative strategy called MIDAS (mixed data sampling). For example,
when we forecast daily volatility, we want to preserve the information in the
intradaily data without computing daily aggregates such as realized volatility.
Likewise, when we focus on, say, weekly or monthly volatility forecasts, we want
to use daily returns or daily realized volatility measures. They focus on the issues
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pertaining to mixed frequencies—that arise typically because we would like to
consider multistep volatility forecasts while maintaining information in high
frequency data.

1.4.2 REALIZED COVARIANCE

In the case, where yt,i is an N -dimensional return vector generated by the
multivariate counterpart of the BSMJ price diffusion model in Equation 1.56,
the processes p(s), μ(t), and q(t) are all N -dimensional vector processes and
W (t) is a vector of N independent Brownian motions. Denoted by �(t), the
N × N càdlàg process such that �(t) = �(t)�′(t) is the spot covariance matrix
process of the continuous component of the price diffusion. Let K (t) be the
N × N process controlling the magnitude and transmission of jumps such that
K (t)dq(t) is the contribution of the jump process to the price diffusion. We then
have that a N -dimensional log-price diffusion can be decomposed as follows:

dp(t) = μ(t)dt + �(t)dw(t) + K (t)dq(t). (1.64)

The integrated covariance matrix (ICov) over [t − 1, t] is the matrix

ICovt =
∫ t

t−1
�(s)ds. (1.65)

Denoted by κj , the contribution of the jth jump in [t − 1, t] to the price
diffusion.

1.4.2.1 Realized Quadratic Covariation. Andersen et al. (2003) have shown
that the realized quadratic covariation (RCov)

RCovt ≡
M∑

i=1

yt,iy′
t,i (1.66)

is a consistent estimator for the sum of the ICov and the realized jump variability

plim�→0RCovt = ICovt +
jt∑

j=1

κjκ
′
j , (1.67)

where jt = ∫ t
t−1 dq∗(s), with q∗(s) the univariate counting process derived from

q(s) such that q∗(s) increases by 1 whenever q(s) changes.
Compared to the univariate case, the additional issue of synchronicity arises,

whereby trading for different assets occurs at different times. Park and Linton
(2012) discuss two methods typically used to solve this problem, namely, the
fixed clock time and the refresh time.

1.4.2.2 Realized Bipower Covariation. For disentangling the continuous
and jump components in the RCov, we need an additional estimator for the
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ICov that is robust to jumps. To this purpose, Barndorff-Nielsen and Shephard
(2004b) introduce the Realized BiPower Covariation process (RBPCov) as the
process whose value at time t is the N -dimensional square matrix with k-, l th
element equal to

π

8

( M∑
i=2

∣∣y(k)t,i + y(l)t,i
∣∣ ∣∣y(k)t,i−1 + y(l)t,i−1

∣∣
− ∣∣y(k)t,i − y(l)t,i

∣∣ ∣∣y(k)t,i−1 − y(l)t,i−1
∣∣ ), (1.68)

where y(k)t,i is the kth component of the return vector yt,i. The factor π/8 ensures
that the RBPCov converges to the ICov under model (Eq. 1.64):

plim�→0RBPCovt =
∫ t

t−1
�(s)ds. (1.69)

Other estimators of the integrated covariance that are robust to the presence
of jumps in assets returns are reviewed in the Chapters 17 and 13 by Mancini
and Calvori (2012) and Park and Linton (2012), respectively, for example, the
threshold realized covariation of Mancini and Gobbi (2012), and the outlyingness
weighted quadratic covariation of Boudt et al. (2010).

A natural question is how these nonparametric covariance estimates can be
used to model and forecast future values of the covariance, ensuring its symmetry
and its positive semidefiniteness. Answers to this question are provided in this
Handbook in the Chapters 4, 9, 13, and 15 by Sheppard (2012), Brownlees
et al. (2012b), Park and Linton (2012), and Corsi et al. (2012), respectively.
The existing models are the Wishart autoregressive (WAR) model of Gouriéroux
et al. (2009), and standard univariate and multivariate models estimated on the
elements of the Cholesky factorization (Chiriac and Voev, 2010) or the matrix
log-transformation (Bauer and Vorkink, 2011) of the covariance estimates. New
models based on the Wishart distribution are in development (Jin and Maheu,
2010; Golosnoy et al., 2010; Bauwens et al., 2012).
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