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Abstract

In this paper, we study the behaviour of the long-memory in the return volatility using high-frequency
data on the Deutschemark-US dollar. In particular, we provide evidence of the overestimation of the long-
memory when we do not take into account the presence of jumps (outliers) in the series. After filtering the
series from its seasonal pattern, and by using a mixture of normal distributions, the long-memory parame-
ter is found to be constant across different sampling frequencies, highly reduced (compared to the normal
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1 Introduction

The temporal dependence in the volatility is one of the most striking features of financial series recorded at
various frequencies. QQuite recently, a huge empirical econometric literature (see Granger and Hyung, 1999, and
Mikosch and Stc?ricé, 1999, among others), has been devoted to explain the long-memory behaviour of such
a series as the result of neglecting structural change. On the contrary, according to Andersen and Bollerslev
(1997a, 1998) and Andersen, Bollerslev and Cai (1999), the long-memory characteristic appears inherent to
the intradaily return series because they manifest themselves rather than tied to infrequent structural shifts
as suggested by Lamoureux and Lastrapes (1990). Diebold and Inoue (1999) provide, in the case of various
simple models, an analytical proof that long-memory and structural change are easily confused and argue that
“even if the truth is structural change, long-memory may be a convenient shorthand description, which may
remain useful for tasks such as prediction”. In particular, they show that stochastic regime switching (for
instance, mixture model, STOPBREAK, Engle and Smith, 1999 and Markov-Switching model, Hamilton, 1989)
is observationally equivalent to long-memory, so long as only a small amount of regime switching occurs. The
above mentioned stochastic regime switching models resemble a standard probability distribution that is called
a mizture of normal distributions (see Jorion, 1988, Vlaar and Palm, 1993). In this respect, Beine and Laurent
(1999) show that the long-memory parameter may be highly reduced (by one half) when modeling four daily
exchange rates vis-a-vis the USD has being generated from a mixture of normal distributions (a bernoulli-normal
distribution).

In this paper, we study the behaviour of the long-memory in the return volatility using high-frequency
data on the Deutschemark-US dollar spot exchange rate (DM—USD).1 The aim of the paper is both to provide
evidence of the overestimation of the long-memory when we do not take into account the presence of jumps
(outliers) in the series and to reinforce the argument that long-memory may be an intrinsic property of the
exchange rate returns.

The intraday volatility process of the exchange rate is quite involved. New phenomena become visible
as one proceeds from daily returns to intraday returns. Andersen and Bollerslev (1997a,b, 1998), Andersen,
Bollerslev and Cai (1999) and Guillaume et al. (1995) interpret the overall volatility process as the simultaneous
interaction of numerous independent volatility components: periodic volatility components (associated with
calendar effects), short-run volatility components (associated with economic news) and longer-run volatility
components (associated with persistent unobserved factors). As pointed out by Andersen and Bollerslev (1997b),
it is necessary to pre-filter the data for its periodicity before estimating a (Fractionally Integrated) GARCH
model.

In order to motivate the empirical relevance of these ideas, Figure 1 plots the lag 5 through 1440 sample

autocorrelation for the five-minute absolute returns, |ng7n|.2

LA more detailed description and analysis of the data is contained in Appendix 1.
2 Absolute returns are often used as a proxy of the volatility, see Ding et al. (1993).



INSERT FIGURE 1 ABOUT HERE

The daily periodicity phenomenon is apparent. Andersen and Bollerslev (1997b, 1998) propos an attractive
methodology based on the Flexible Fourier Form (FFF) that allows a direct interaction between the level of the
daily volatility and the shape of the intradaily pattern. Their model is a good starting point for high-frequency
volatility modeling in a coherent framework. We apply their general framework with some differences: we take
into account explicitly the Daylight Saving Time, only the US macroeconomic announcements are studied and
the daily volatility component is calculated from a FIGARCH model. Given the estimates of the determinist
periodicity effects, we filter the five-minute absolute returns to obtain an innovation process |Ryn|/5; that
should be rid of periodicity effects. Details on this filtering procedure are proposed in the following sections.

Rt,n

Figure 2 depicts the fifty days correlogram of filtered five-minute absolute returns,

INSERT FIGURE 2 ABOUT HERE

This figure shows a strictly positive and slowly declining correlogram. Spikes are apparent at the daily
frequencies but they are minor and do not distort the overall pattern.®> The most striking feature is the initial
rapid decay in the autocorrelations followed by an extremely slow rate of decay. This is confirmed by the high
value of the Ljung-Box statistic (258450) at lag 1440 (five days). This correlation structure is not compatible with
the standard GARCH process introduced by Bollerslev (1986). Instead, Figure 2 clearly suggests the presence of
a long-memory process in the absolute returns which is consistent with the fractionally integrated long-memory
volatility model proposed by Baillie, Bollerslev and Mikkelsen (1996). When applying the fractional differencing
operator (1 — L)O'4 to the filtered five-minute absolute returns, we observe that the autocorrelations display
much less long term dependence (see Figure 3). The Ljung-Box statistic is reduced to 4307, which is lower than

in the previous case and for first differenced data (16580).
INSERT FIGURE 3 ABOUT HERE

By applying semi-parametric tools on the same dataset, Andersen and Bollerslev (1998) find an evidence
of long memory in the volatility and conclude that the long-memory characteristic appears inherent to the
absolute return series. In this respect, we estimate the FIGARCH model for several observation frequencies
(5-, 10-, 15-, 20-, and 30-minutes). Instead of first filtering the data and then changing the frequency, as
proposed by Andersen and Bollerslev (1997b), we first change the frequency and then filter the series by using
the corresponding filter. Our estimation results suggest that allowing for jumps in the series (especially in the
variance), highly reduces the long-memory property of the series but reinforce the idea that the long-memory
is an intrinsic property of the exchange rate returns. This is consistent with the empirical evidence on stock
returns volatility provided by Granger and Hyung (1999) and with Diebold and Inoue (1999) warnings about

“the temptation to jump to conclusions of structural change producing spurious inferences on long memory”.*

3The regularity of the correlogram in Figure 2 can be compared to those of similarly filtered absolute returns presented in Payne

(1996) and Andersen and Bollerslev (1997b, 1998).
4See Diebold and Tnoue (1999) p.25.



In others terms, both features are necessary to capture the short run dynamics of exchange rate volatility.
Moreover, unlike the normal assumption, modelling the series as being generated from a mixture of normal
distributions tends to stabilize the d parameter across different sampling frequencies.

The remainder of the paper is organized as follows. Section 2 and its subsections present Andersen and
Bollerslev’s method to filter the series from its intraday periodicity. Section 3 describes the FIGARCH model,

the estimation methods and comments the results. Finally, section 4 concludes.

2 The intraday volatility

The volatility dynamics of intraday foreign exchange rate returns are involved. There are intraday volatility
patterns, reflecting the daily activity cycle of the regional centers as well as weekend and Daylight Saving Time
effects, the macroeconomic announcement effects (immediately following the release) and standard volatility
clustering at the daily level. Thus, we assume that the volatility process is driven by the simultaneous interaction

of numerous components which are described below.

2.1 Study of the different volatility components

2.1.1 Periodic volatility components

As Dacorogna et al. (1993) wrote: “The behavior of a time series is called seasonal if it shows a periodic
structure in addition to less regular movements”. The foreign exchange (FX) market show strong seasonal
effects caused by the presence of the traders in the three major markets according to the hour of the day, the
day of the week and the Daylight Saving Times. The major movements of intradaily returns volatility can be
attributed to the passage of market activity around the globe. The global FX market consists of three major
markets: the Far East, Europe and North America. Figure 4 depicts the average absolute returns over the (288)

five-minute intervals.
INSERT FIGURE 4 ABOUT HERE (see Appendix 2)

This intraday pattern is quite similar across all day of the week with discrete changes in quoting activity
marking the opening and closing of business hours in the three major regional centers, all of which have their
own activity pattern. The following hours can be used as indicative: the Far East is open from 21:00 GMT
to 6:00 GMT, Europe trades between 7:00 GMT and 16:00 GMT and trading in North America occurs from
12:00 GMT to 21:00 GMT. Using the discussion of market opening and closures presented above, we explain
the intraday seasonal volatility as follows. At 0:00 GMT, the Far Eastern market has already been trading for
around three hours and market activity is high. From 0:00 GMT until about 3:00 GMT, activity levels and
volatility remain high. The lunchtime in Tokyo (3:00 GMT- 4:45 GMT) is the point of the day corresponding

to the most prominent feature of the series. Volatility drops sharply and regains its former value at about



5:00 GMT. Generally, Europe begins to contribute to activity at around 7:00 GMT as the Far FEastern market
begins to wane: there is a small peak in volatility. During European lunch hours (11:30 GMT), both activity
and volatility know a slight lull. The most active period of the day is clearly when both the European and
North American markets are open (between 12:00 GMT and 16:00 GMT). Volatility starts to decline as first
the European and then US markets wind down. At around 21:00 GMT, the Pacific market begins to trade
again and the daily cycle is repeated after midnight. This intraday pattern is consistent with previous evidence
reported in Miiller et al. (1990), Dacorogna et al. (1993), Guillaume et al. (1994) and Andersen and Bollerslev
(1997b, 1998).

An other intraday pattern often recognized in high frequency returns is day-of-the-week dependencies. Ander-
sen and Bollerslev (1998), with the same data set, find that Monday appears the least volatile, while Thursdays
and Fridays are the most volatile. Evidence has shown these eflects to be the result of macroeconomic news
announcements, which are released mainly on these two days (Harvey and Huang, 1991).

Daylight Saving Times (DST) has also an effect on the seasonal pattern. Indeed, DST changes will influence
the local time relative to GMT and thus the intraday volatility pattern in reference to GMT. Both North America
and Europe lose one hour relative to GMT in summer months. The Far Eastern local time remains unchanged.
Andersen and Bollerslev (1998) and Payne (1997) studied the DST problem. Andersen and Bollerslev show
that the volatility pattern appears translated leftward by exactly one hour between 6:00 GMT and 21:00 GMT
during the US Summer Time regime.

The seasonal pattern, presented above, seems fully explainable. Failure to take account of those intradaily
seasonals is likely to result in misleading statistical analyses. The first authors who have reported intraday
analysis (Wasserfallen and Zimmermann, 1985, Feinstone, 1987, Ito and Roley, 1987, Wasserfallen, 1989 and
Goodhart and Figliuoli, 1991) limited themselves to certain periods of the day, generally the most active ones
for a particular market center, so the problem of daily and weekly seasonality was avoided.

The seasonal phenomena in the volatility of FX markets can be modeled in a variety of ways. Baillie
and Bollerslev (1991) use a GARCH specification with seasonal dummy variables for modeling the conditional
volatility on hourly forex returns on data from the first six months of 1986. For the current study, this would
require estimating 288 time-of-day parameters, if one dummy variable were created for each five-minute interval.
The number of variables required is very large and it is unlikely to be effective in capturing the complexity of
the seasonal patterns. Another possibility to accommodate seasonality is to modify the traditional GARCH
type models (Bollerslev and Ghysels, 1994). Alternatively, the market volatility can be tied to the intensity
of trading via a subordinate stochastic process representation, as suggested by Clark (1973). This approach
has been adopted in some recent works by researchers from Olsen & Associates (see for example, Dacorogna
et al., 1993, Miiller et al., 1992). Instead of modeling asset price behavior in calendar time, price movements
can be represented as being driven by an information arrival process which itself evolves randomly with certain

predictable patterns through time. In Dacorogna et al., especially, the seasonal volatility patterns are modeled



by a new time scale, named v-time, under the assumption of three main geographical areas where most of the
worldwide trading activity is centered: East Asia, Europe and America. Their time scale conversion expands
periods with high average volatility and contracts those with low volatility. Their method smooths the seasonal
pattern. Another strategy, the one used in this paper, is to seasonally adjust the data. We define the filtered
return series Ry ,,/5;, where 5 ,, refers to the periodic intraday volatility component which may be modeled by
different ways (see, for instance, Taylor and Xu, 1995, Chang and Taylor, 1996 and Andersen and Bollerslev,
1997b). The method, adopted in this paper, is the Flexible Fourier Form developped by Andersen and Bollerslev
(1997b): intraday seasonality was modeled using several sinusoidal and quadratic parameters.” The general

formulation of the flexible Fourier form is the following:

2 P 2
n n .
ft,n) = po+ MIE + MQE + ; (vy; cos aym + §; sin aym) + ;ijSTj
D

k=1
where we consider the n — th interval® in the ¢ — th day, N is the number of intervals per day, N1 = (N+1)/2
and Ny = (N + 1)(NV + 2)/6 are normalizing constants and o; = 2F. As mentioned earlier, the DST alters
the form of the seasonal. Therefore, we estimate two seasonal regimes: Summer Time’ and Transition period.®
Hence, there are two different dummy variables (DST;) according the time of the year, j = 1 is the Transition
Time period with DST; = 1 on this period and 0 otherwise ; 7 = 2 is the Summer Time period with DSTy = 1
on this period and 0 otherwise.

The smooth seasonal generated from the Fourier terms is unlikely to cope well the sharp drop in volatility, for
instance, around lunch in the Far East and the day of the week dependencies. To fil this gap, we add f: N dr(t,m)
where I, (t,n) is an indicator variable for event & during interval n on day ¢. The events may be as fzvzeh calendar
effects as announcement effects (see next section). Following Andersen and Bollerslev (1998), we impose a
reasonable declining weight structure on the volatility response pattern A(k,i) = Ap.v(d), @ =0,1,2,..., Ny
where the pre-specified v() coefficients are determined by a specific polynomial and event k impacts volatility
over Nj intervals. For the Tokyo open (0:00-0:35 GMT), we choose a linear volatility decay. The volatility
decay pattern around the weekends (early monday morning (21:00-22:30 GMT), late friday (17:00-21:00 GMT,

US Winter Time or 16:00-21:00 GMT, US Summer Time) is restricted to a second order polynomial.

SPayne (1997) uses a similar method in his stochastic variance model of the DM-USD exchange rate. Beattie and Fillion (1999)
also use it to assess the effectiveness of Canada’s official foreign exchange interventions on intraday volatility of the Can-USD

exchange rate.
6For five-minute returns, n equals 144 at 12:00 GMT.

"DST changes occurred in Germany and other European countries in the last weekend of March and September. In the US,

changes occurred in the first weekend of April and last week of October. Japan did not have Daylight Saving Times changes.
8Between the last weekends of September and October, the USA is still in Summer Time, but Europe is already in Winter Time.

This period lasts 4 weeks. In the week before the first weekend in April, the USA is still in Winter Time but Europe is already in

Summer Time.



2.1.2 Short-run volatility components: macroeconomic announcements effects

Macroeconomic announcements are relevant for proper modeling of the volatility process. Indeed, Ederington
and Lee (1993) showed that the largest returns appear linked to the release of public information (in particular,
certain macroeconomic announcements). Studies that examine the impact of scheduled news announcements
on high frequency volatility are various (for instance, Andersen and Bollerslev, 1998, Ederington and Lee, 1993,
1995, Goodhart et al. 1993, Harvey and Huang 1991, Ito and Roley, 1987, DeGennaro and Shrieves, 1997 and
Payne, 1997). The findings of these studies are consistent, indicating that the releases induce quite dramatic
price adjustments but the associated volatility shocks appear short-lived.® These studies are also interesting to
measure of the significance that the market attributes to each type of announcement.

We can get a precise economic impact by using the forecast errors associated with announcements (Almeida
et al., 1996 and Payne, 1997). The forecast errors are created as the difference between the actual announced
figure and a median survey expectation. We can also get the general impact of announcements by using a
simple dummy specification for announcements. Our analysis focuses on a set of monthly, US, macroeconomic
announcements. These announcements are all related to the real economy. It consists of the Employment
Report, the Merchandise Trade Deficit, the Producer Price Index, Durable Goods Orders, Retail Sales, Housing
Starts, Leading Indicators, Industrial Production and Capacity Utilization'?, Consumer Price Index, Consumer
Confidence Index, NAPM survey and Gross Domestic Product (GDP). The category of news is extracted from

the Reuters news items!!

using various keyword combinaisons.

In equation (1), the Ix(¢,n) indicators allows for the inclusion of either regular dummy variables or a pre-
specified volatility response pattern associated with a calendar related characteristic or news macroeconomic
announcements effects. The effect of news on volatility before announcement is not studied here. However, if
announcements affects volatility for a hour, there are 13 separate event-specific coeflicients to estimate. Given the
limited number of occurences of each type of news announcement, it is not possible to simultaneously estimate
separate coeflicients for each event and time interval following the news releases. Instead, following Andersen
and Bollerslev (1998), we impose a reasonable declining weight structure on the volatility response pattern. The
response pattern following each of the announcements is approximated by a third-order polynomial restricted
to reach zero at the end of the one hour response horizon. The dynamic response pattern is A(k, 1) = Ag.v(4),

i=0,1,2,...,12, where the pre-specified (i) coeflicients are determined by a third-order polynomial and ), is

the announcement specific loading coeflicient.

9There are signs of higher volatility for several hours following the announcement.
10The Industrial Production and the Capacity Utilization are announced together.
HThe O&A data also include all of the news headlines that appeared on the Reuters money news-alerts screens. As with the

quotations, these are time stamped to the second in GMT and constitute the basis for our analysis of announcement effects.
Comparaison of the time stamps for scheduled news releases with the known release schedules indicates that Reuters is timely with

respect to scheduled news. During the sample period, a total of 105065 such headlines appeared.



2.1.3 Daily volatility components

Numerous studies suggest that daily and monthly foreign exchange returns exhibit significant volatility clus-
tering. Thus, these ARCH effects at lower frequencies cannot exist exclusively at these frequencies as the
aggregation of intraday returns would not be able to accomodate the persistent volatility processes present at
the daily level. It is necessary that the low-frequency volatility embodied in high frequency data has to be
modeled. Moreover, Andersen and Bollerslev (1998) demonstrated that daily GARCH volatility predictions
are strongly related to the sum of the absolute intraday changes in the foreign exchange for the following day.
Indeed, they noted that the correlation between the two series is 0.672, or an R—squared of (0.672)2:45.2%.
So, to take into account the daily component of foreign exchange volatility, we used a daily volatility forecast
(6).12

As Andersen and Bollerslev (1998) write: “Unfortunately, most empirical work has studied each of the above
phenomena - the intraday and intraweekly patterns (calendar effects), the announcements (public information
effect), and the interday volatility persistence (ARCH effects) - in isolation. This is ultimately not satisfactory”.
Indeed, earlier studies tend to emphasize one of the following three components. Recent findings suggest that

the three factors should be accounted for simultaneously to capture the overall intraday pattern.

2.2 Modeling simultaneously the systematic components of volatility

Andersen and Bollerslev (1997b) proposed a method based on the Flexible Fourier Form (FFF) to model
the intraday volatility periodicity, the effects of macroeconomic news announcements and the persistent daily
volatility dependencies found in foreign exchange data. We apply their framework which consists in decomposing

the five-minute returns (R ,,) as:

Rt,n - Rt,n - 0t,n~3t,n~Zt,n (2)

where Rtm is the expected five-minute return, o;, is a daily volatility factor, s; , represents both the calen-
dar features and the macroeconomic announcement effects and Z; ,, is an i.i.d. mean zero and unit variance
innovation term. In order to obtain an operational regression equation, Andersen and Bollerslev propose to
impose some restrictions and some additional structure (see Andersen and Bollerslev, 1997b for more details).

We estimate the following operational regression:3

I2This daily volatility is obtained by estimating an AR(1)-FIGARCH(1,d,1) over the period January 1980 to September 1993,
13The FFF estimation involves a two-step procedure (Andersen and Bollerslev, 1997).
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where R denotes the sample mean of the five-minute returns, ¢ = E(log Z7,) + E(logo?,, — log 6?7n) and U
is the error term which is stationary. &; is an estimate of the daily volatility component. The daily volatility
component is 6, = 64/N'/? where 6, is derived from a daily AR(1)-FIGARCH(1,d, 1) model. All coefficients
are estimated simultaneously (absolute t-statistics are robust for heteroskedaticity). The estimation results

relative to the five-minute returns are reported in Table 1.



TABLE 1: Results of the FFFestimation on five-minute returns

HotC -10.0708 6.151
My 13.6421 2.890
Mo -4.3987 2.864
Vi 1.9814 2.131
Yo 0.2966 1.556
Ya 0.4883 6.601
Va 0.2621 3.737
Ys 0.2407 3.799
Yo -0.0304 1.229
o 0.4203 2.630
5, 0.5181 5.801
O3 -0.1062 2.402
0y 0.1032 3.255
05 0.2156 5.897
O6 0.1607 3.426
oy -0.1961 0.810
(V) 0.0243 0.192
Tokyo opening 1.4236 4.303
Tokyo lunch 1 -1.3415 9.551
Tokyo lunch 2 -0.1036 3.127
Monday 1 0.2985 1.185
Monday 2 0.0471 0.776
Friday late 1 -0.0009 0.004
Friday late 2 -0.0355 1.804
Tuesday 0.2471 2.697
Wednesday 0.2606 2.505
Thursday 0.2681 2.378
Friday 0.0994 0.549
Consumer Confidence 0.4722 1.374
Consumer Price Index 1.1652 4.356
Capacity Utilization Industrial production 0.0391 0.167
Durable Goods Orders 1.5073 4.788
Index of Leading Indicators 0.2691 1.524
US NAPM survey -0.1448 0.337
Housing starts 0.6387 1.972
Producer Price Index 0.4658 1.099
Advance Retail Sales 0.5657 1.337
Merchandise Trade Balance 1.2874 3.232
GDP 1.3731 5.501
Jobless Rate 2.7441 8.218

Robust absolute t-statistics are reported in the third column.

After some experimentation, we found that P = 6 is suflicient to capture the basic shape of the series.
This FFF provides an estimated seasonal pattern that fit reasonably well the intraday periodicity. All co-
efficients associated with the simple Fourier form are significant, except for the second and the last cosinus
terms. The Tokyo market opening effect is captured by a single coefficient (it allows for a linear decay in the
associated volatility burst). We note a strong market opening effect. Indeed, it has an immediate response
coefficient of 1.42 implying that volatility jumps by 142 percent at 9 a.m. Tokyo time. The assessment of

the remaining calendar and announcement effects is more complicated because the regressors are not simple
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indicators, but imply pre-specified dynamic response patterns. For instance, the Tokyo lunch and the fri-
day late effects are accommodated by a second-order polynomial over the corresponding intervals, resulting
in two regression coefficients (Tokyo lunch 1, Tokyo lunch 2, Friday late 1..., see Table 1) for each period.
Besides, we note that the Tokyo lunch exerts a considerable effect. For the announcements, we use a third-
order polynomial to capture their impact on the volatility. The actual estimates for this polynomial is given
by (i) = 1.9228 [1 — (i/13)3] —0.7205 [1 — (i/13)2] ¢ 4+ 0.0988 [1 — (i/13)3] 2. Hence, the instantaneous jump
in the volatility equals exp(Ag.v(0)/2) — 1. In particular, the instantaneous jump for the Jobless Rate equals
exp(2.7441.(1.9238/2)) — 1 = 1.63 or 163%. By the way, the response at the i’" lag equals exp(\;.v(¢)/2). Table
1 reports estimates of separate A\, coeflicients for each type of announcement. The Jobless Rate clearly has the
greatest effect on volatility, the coefficient ;455 being the highest. The next most important announcements
are the GDP, the Merchandise Trade Balance, the the Durable Goods Orders and the Consumer Price Index.
The Consumer Confidence, the Housings starts, the Producer Price Index and the Advance Retail Sales figures
form a medium impact sub-group. Finally, there is a group of low impact announcements which comprises
the Capacity utilization/Industrial Production, the Index of Leading Indicators and the US NAPM survey. In
the regression, we incorporated day-of-the week dummies for all weekdays except Monday. There is a clear
distinction between midweek days and Mondays and Fridays. However, both the Monday morning and the
Friday afternoon effects are insignificant.

Following Andersen and Bollerslev (1997b), the link between 5, and f(t,n) is as follows:

B T exp (f(t,n)/2
ZtT=1 27]2;1 eXp f(t,n)/2)

St,n

)

where 8, is the estimator of the intraday periodic component for interval n on day t. Figure 5 shows the

average one-day estimated seasonality (5;,) of the five-minute returns.

INSERT FIGURE 5 ABOUT HERE

3 Long-memory from intraday returns

Quite recently, Andersen and Bollerslev (1997b) stressed the danger of estimating GARCH models on high-
frequency data without removing its intraday pattern. After applying the FFF on the raw data, Figures 2
and 3 clearly suggest the presence of long-memory in the volatility of the filtered DM-USD, which is became
a stylised fact in the empirical literature. It is well known that the degree of fractional integration should be
identical across different sampling frequencies under quite general distribution assumption (see Andersen and
Bollerslev, 1997a and Bollerslev and Wright, 1998). From frequency-domain methods, Andersen, Bollerslev and

Cai (1999) estimate the degree of fractional integration for the 5-, 10-, 15- and 30-minute absolute Nikkei 225
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returns (from January 2, 1994 to December 31, 1997). The d parameters are respectively 0.429, 0.404, 0.482
and 0.485 which are indistinguishable and they conclude that the long-memory feature is an inherent property
of the Nikkei 225 volatility.™*

The aim of this section is to provide a parametric estimation of the long-memory property. The FIGARCH

(1,d,1) model proposed by Baillie et al. (1996) is given by the two following equations:

ét,n = p+ pét,nfl + €im, €t,n | Qt,n ~ D(O,Uin) (4)
2 -1 d| 2
Ot = wH|l=(1=FL) (1-¢L)(1-L)"| €&, (5)

where an AR(1) process is allowed for étJ” i is the mean of the process and €, ,, is the information set at time
t and interval n. p,p, w,B,,¢, and d are parameters to be estimated with d being the fractional integration
parameter and finally, L is the lag operator.!® For a FIGARCH(1,d, 1), sufficient conditions for the conditional
variance to be strictly positive are given in Baillie el al (1996).16 For higher orders, these conditions are
cumbersome to derive, which obviously hampers the generalisation of the FIGARCH specification to higher
orders. Interestingly, the FIGARCH(1,d,1) model nests the GARCH(1,1) model (Bollerslev, 1986) for d = 0
and the IGARCH model (Engle and Bollerslev, 1986) for d = 1. As advocated by Baillie et al. (1996), the
IGARCH process may be seen as too restrictive as it implies infinite persistence of a volatility shock. Such
a dynamics is contrary to the observed behavior of agents and does not match the persistence observed after
important events (see Baillie et al., 1996, Bollerslev and Engle, 1993). By contrast, for 0 < d < 1, the FIGARCH
model implies a long-memory behavior, i.e. a slow decay of the impact of a volatility shock.

The first candidate distribution (D) for the estimation of this model is the normal one. In the Gaussian

case, the log-likelihood of the model takes the following form:

T N
La(Lyorm) =) Y [-0.5In (2707 ) + (¢7,,/07 )] (6)

t=1n=1
where T" and N are respectively the number of days and the number of intervals per day.
Recent developments in time series econometrics have been concerned with the interaction between structural
change and long-memory. Diebold and Inoue (1999) show that stochastic regime switching may be observationaly
equivalent to long-range dependence. The key idea developped by these authors is that regardless of the sample

size, long-memory can be detected if realizations tend to have just a few breaks. Granger and Hyung (1999)

M Notice that they also find d = 0.476 on a longer time series of daily Nikkei 225 absolute returns.
PWe follow Baillie et al (1996) and truncate the infinite Taylor approximation of (1 — L)d at a number of lags equal to 1000.

Chung (1999) proposes an alternative specification of the FIGARCH due to the strong relationship between w and the truncation
order. We do not tackle this issue in this paper because the parameter of interest is d, which is not affected by this choice, as shown

by Chung (1999).
169ome of these sufficient conditions are nevertheless not necessary. For instance, they specify w > 0. By contrast, our estimation

procedure allows w to be negative but checks the positiveness of the conditional variance on a case-by-case basis (see Nelson and

Cao, 1992).
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underline the fact that correcting for outliers may significantly decrease the long-memory parameter. To cope
with this issue, we use a mixture of normal distributions (bernoulli-normal) that allows for the possibility of
endogeneously determined jumps. Mixtures have been introduced in econometrics by Jorion (1988) and more
recently adapted to the GARCH f{ramework (with weekly data) by Vlaar and Palm (1994), Neely (1999) and
to the FIGARCH (with daily data) by Beine and Laurent (1999). The major findings of these papers is that
the volatility persistence significantly decreases when accounting for jumps in the series. This invalidates the
IGARCH model, which is a common result in the empirical literature.

Considering this distribution, equation (4) can be rewritten as follows:

I:Etm =p+ AT+ pétm + ¢ (7)

where A is the probability of a jump and 7 is the size of the jump, while equation (5) remains unchanged. The

log-likelihood then takes the following form:

_ 62 T 2
In(LBern—Norm) = —% In(2m) + ZtT=1 In { (Ei) exp { (6t £27) } (8)

20'%”
A (N7
e P [ 207, 15) ] }

where 62 is the variance of the jump size.

Maximum likelihood estimations have been conducted for five frequencies, 5-, 10-, 15-, 20- and 30-minute
returns for the normal and the bernoulli-normal distributions.!” Andersen and Bollerslev (1997D) first filter the
five-minute returns (R , ) and then estimate the GARCH models on this filtered series (étm). The method used
to change the frequency from 5 to 5 % k minutes (k = 1,2,...) is straightforward: REQ = Zi:(nfl)k—kl,nk Ry ;,
where t =1,2,...,T,n=1,2,..., N and N = 288/k. By the same way, they calculate the filtered 5 * k minute
returns as 1:22(5{2 = Zi:(nil)]ﬁ_l’nk 15%71-. In order to avoid an aggregation problem, we propose to change the
frequency and after filter the series (finding the FFF relative to the frequency of interest). Details concerning

this choice are reported in Appendix 2.

Results of the estimations are given in Tables 2 and 3:

7Intraday returns are very small values. For instance, the mean of the filtered five-minute returns equals 1.6x103. To avoid
convergence problems, we multiplied the returns by 10%. All the computations have been done in GAUSS 3.2 and Maxlik 4.0. A
Gauss procedure to compute equation (5) is available at the following url: http://www.egss.ulg.ac.be/econometrie/FIGARCH.SRC
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Table 2: AR(1) - FIGARCH(1,d,1) with the normal distribution

5-min 10-min 15-min 20-min 30-min
K -0.6231 -1.5974 -0.1238 -1.7981 1.1771
[0.532] [0.678] [0.035] [0.372] [0.161]
p -0.0981 -0.0983 -0.1035 -0.0886 -0.0729
[26.084] [17.675] [15.423] [11.155] [7.218]
wx 10 1.9519 4.0851 7.4404 10.5540 18.2861
[46.928] [33.743] [33.016] [27.074] [23.662]
d 0.4252 0.4009 0.3332 0.2879 0.2607
[60.604] [43.411] [37.232] [29.970] [26.090]
By 0.7109 0.6634 0.5811 0.3582 0.2265
[157.351] [98.022] [46.916] [8.156] [5.044]
(0} 0.5401 0.4653 0.4227 0.2237 0.1236
[78.490] [43.719] [29.995] [5.516] [2.833]
bs 0.3470 *=*  0.0988 i 0.0634 % .0.0322 % 0.1767  *=*
by 22.1597 **  9.8128 i 8.2316 i 4.0885 i 6.0243 i
AlC 14.9607 15.5806 15.9550 16.1788 16.5811
SBIC 14.9615 15.5819 15.9570 16.1813 16.5846
S(1) 0.0056 0.1152 42131 * 1.6411 0.3304
Log Lik x 10|  -56.2272 -29.2777 -19.9871 -15.2002 -10.3849
Absolute t-statistics of maximum likelihood estimates are in brackets.
Statistics are computed on normalized residuals.
bs; and b, are excess skewness and kurtosis.
AIC and SBIC are Akaike and Schwarz Bayesian information criteria.
** and *** indicate that the statistic is significant at 5 and 1%, respectively.
The data have been multiplied by 10°.
Table 3: AR(1) - FIGARCH(1,d,1) with the bernoulli-normal distribution
5-min 10-min 15-min 20-min 30-min
H 3.1289 3.1848 3.9089 7.8521 1.1855
[2.531] [1.257] [1.062] [1.559] [0.161]
p -0.1078 -0.1018 -0.1081 -0.0984 -0.0846
[27.351] [18.335] [15.965] [12.521] [8.743]
() -3.2143 -4.4563 -1.7655 0.4062 4.5819
[0.006] [0.002] [0.000] [0.000] [0.000]
d 0.1159 0.1272 0.1204 0.1270 0.1460
[27.371] [19.940] [18.250] [16.214] [12.002]
By 0.8560 0.8884 0.9702 0.9748 0.8319
[164.243] [66.507] [166.127] [115.803] [11.226]
(0} 0.9131 0.9099 0.9770 0.9796 0.8176
[232.678] [80.593] [216.450] [141.426] [10.463]
A 0.1061 0.1231 0.1061 0.1235 0.1261
[37.840] [27.068] [20.4697] [16.102] [15.265]
T -32.4123 -23.9715 -29.8268 -68.9173 13.1748
[2.641] [1.130] [0.854] [1.710] [0.220]
& x10° 5.8670 10.0062 16.6840 17.1796 29.1330
[130.685] [63.925] [41.3787] [25.878] [25.781]
bs -0.0338  **  -0.0200 -0.0107 -0.0132 0.0276
by 0.4658  ***  0.5226 i 0.5878 i 0.3588 0.3895 i
AlC 14.8607 15.4903 15.8560 16.0977 16.4781
SBIC 14.8618 15.4923 15.8589 16.1015 16.4834
S(1) 2.1986 0.8726 1.4177 0.2187 0.0001
Log Lik x 10| -55.8509 -29.1076 -19.8627 -15.1237 -10.3201

Note: See Table 2.

Several comments are in order.
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First, the bernoulli-normal distribution seems appropriate to describe the series. Likelihood ratio tests
(LRT), not reported here, and the information criteria clearly favour the bernoulli-normal distribution for each
sampling frequencies. Looking at the bernoulli parameters reveals that the probability of a jump is about
10%. Interestingly, as in Beine and Laurent (1999, 2000), we can distinguish two regimes (distributions): a low
volatility regime and a high volatility regime (7 and 52 being respectively highly non significant and significant).

Second, relying on the normalized residuals (see Vlaar and Palm, 1994), all excess kurtosis (by) are found
to be significant at the 5% level while there is no excess skewness (b3). Nevertheless, by turns out to be much
lower than those obtained for the normal distribution, which confirms that accounting for a non uniform flow of
information reduces excess kurtosis. To test for possible remaining ARCH effects, we use the rank test proposed
by Wright (1998) that it is more powerful than alternative tests when the residuals are highly non normal
(something we suspect here).18 According to this statistic, the three models correctly account for the cluster of
volatility phenomena for both distributions.

Third, concerning the constance of the d parameter, the normal and the bernoulli-normal distributions lead
to different results. While d highly decreases when the sampling frequency decreases in the normal case (from
0.42 to0 0.26), d turns around 0.12 in the later case.'? Quite interestingly, with the normal distribution, w evolves
in the opposite way of the d parameter (and is always significant). Similarly, 62 increases when the sampling
frequency decreases in the bernoulli-normal case (and is always significant) but w is not significant for the five
frequencies.?’ So, there is a strong relation between the long-memory parameter and the variance of the jump

size (52) and neglecting the presence of outliers may lead to an overestimation of the long-memory behaviour.

4 Conclusion

As pointed out by Andersen, Bollerslev and Cai (1999), “it remains an open issue to identify the specific
economic forces that may generate the long-run persistence patterns. At an abstract level, one possibility is that
it may arise from the interaction of a large number of heterogenous information arrival processes”.

According to Andersen and Bollerslev?! (1997a, 1998) and Andersen, Bollerslev and Cai (1999), the long-

18 The nonparametric rank test introduced by Wright (1998) can be used as a misspecification test suitable for GARCH and
FIGARCH models. For fixed I, the test statistics S(I) is given by S(I) = Tzl»zl p(s1¢, 811 3)% where p(.,.) denotes the sample
autocorrelation function and s1¢ is given by s1¢ = (r(e?) — Lé"—l)/\/ Eéw where e; are the standardised (here, normalized)
residuals and r(eg) is the rank of e; among eg, e2,...,er. Under the null of a correct specification in the conditional variance, Wright
(1998) proposes to use a x2(I) distribution (the test is not perfectly exact). Results are only reported for I = 1 but are consistent

with other values of I (5, 10 and 20 for instance).
YRy estimating a Markov-Switching FIGARCH(1, d, 0), Beine and Laurent (2000) find d = 0.09 on a longer sample of daily

DM-USD exchange rate returns (while the standard FIGARCH(1,4d,0) lead to a d = 0.27).
20Chung (1999) proposes a different specification of the FIGARCH model, more in line with the ARFIMA model. Equivalence

between the two specifications requires that w = 0. Our results suggest that the normal distribution fails to accept this restriction.
Chung (1999) interprets this positiveness of w (whose theoretical value is zero) as an artefact of the subjective choices of the
truncation order of (1 — L)d. However, the bernoulli-normal distribution leads to a different conclusion, w being always non
significant. By the way, we argue that finding w > 0 may also be due to the choice of the distribution and using a more appropriate

distribution (that takes into account the presence of outliers) may overcome this problem.
21 Andersen and Bollerslev (1997a) developped a theoretical framework which is built on the idea that the aggregate market
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memory characteristic appears inherent to the return series because they manifest themselves, even over shorter
time spans. They concluded that the source of fractional integration in the volatility is related to the data gen-
erating process itself, rather than tied to infrequent structural shifts as suggested by Lamoureux and Lastrapes
(1990). By using parametric estimations, we also find evidence of long-memory in the DM-USD. However, after
allowing for jumps in the series (especially in the variance), we conclude in favour of less long-memory than
Andersen, Bollerslev (1997a) even if we reinforce their argument that long-memory is an intrinsic property of
the exchange rate returns.

>From our results, we can argue that the volatility of the DM-USD describes the same long-memory be-
haviour accross different sampling frequencies. However, accounting for jumps in the series (or for the presence
of outliers) highly reduces this long-memory, which remains relevant at any significance levels. While d ranges
from 0.26 to 0.42 in the normal case, d ranges from 0.11 to 0.14 in the bernoulli-normal one. This result is in
line with the work of Beine and Laurent (2000) who find a large decrease of the d parameter (but still signifi-
cant) when modeling daily DM-USD by a Markov-Switching FIGARCH to account for the possible structural

change.?
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Appendix 1: Data construction

The exchange rate data are tick-by-tick observations on the German mark price of the US dollar (DM-USD)
as displayed on the Reuters FXFX screen from October 1, 1992, through September 30, 1993. There were
1472241 quotations in this year. Each quote contains a bid and an ask price along with the time to the nearest
even second. Moreover, we utilize a daily time series of 3586 spot DM-USD exchange rates from January 3,
1980 through September 30, 1993. In this paper, only the bid prices are used because bid price is quoted in its
entirety by Reuters. As noted by Dacorogna et al. (1993) and Zhou (1996), only the last two or three digits of
the ask price are quoted. Note that the recording events j (for which the times are marked by ;) are unequally
spaced. As we are investigating the time series using equally spaced time intervals, we have to find a mapping
procedure to fixed time steps, which are denoted by ¢;. Our time steps are defined by using time intervals of
At = 5 minutes lenght.>> We applied a linear interpolation®* as an appropriate method for interpolating the
prices between the previous ¢;_; and the next {; data record surrounding the time step ¢; with ¢;_; <{; <{;.
In general, a trader is not interested in the price, rather they are interested in the return that they will gain
from that investment. Statistically speaking looking at the raw prices is not very constructive, as the prices
can be highly correlated and in general are not stationary. The nth return within day ¢, R; », can be defined
as the change in the logarithms of prices: R;, = 100 [log(P: ) — log(Pipn-1)], t = 1,2,..,T, n = 1,2, ..., N.
All N = 288 intervals during the 24-hour cycle and T = 261 weekdays in the sample are used. To reduce
the influence of the slow-trading pattern over the weekend, we follow the adjustment process of Andersen and
Bollerslev (1996) by excluding returns from Friday 21:00 GMT through Sunday 21:00 GMT. There are 75167

returns®® for five-minute intervals after the adjustment for the weekend periods.

Appendix 2: Data transformation
Consider the following extreme case.
Let R, be 12 hours data (k: = 1). The two first returns are Ry ; and R; o while the corresponding filters

are 511 and 5y 2. Following Andersen and Bollerslev (1997b), the first filtered 24 hours (1 day, k = 2) return is:

B2 _ Ry i Rio  PRi1812+ R12%11
11— = = = P
S1,1 51,2 51,151,2

Recalling that if we only include in the FFF variables that are related to a one day horizon (excluding for

instance daily effects), % Zfil 5i+ = 1, which means that éfi should be equal to Rfi However, following

Andersen and Bollerslev (1997b):

23Papers by Ito and Roley (1987) and Ederington and Lee (1993) suggest that sampling frequencies as short as one hour may
be too long to assess the impact of macroeconomic announcement on volatility accurately. So, we compute paces at five-minute

intervals because we study announcements.
2414 is an interpolation between the preceding and immediately following quotes weighted linearly by their inverse relative distance

to the desired point in time.
25To preserve the number of returns associated with one week we make no corrections for any worldwide or country specific

holidays that occurred during the sample period.
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B2 _ Ry1812+ Ri2511
1.1 =

— # Rig+ Ry
51,151,2
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Figure 1: Five days correlogram of five-minute absolute returns.
Note: The figure plots the lag 5 through 1440 sample autocorrelation for the five-minute absolute returns

on the DM-USD from October 1, 1992 through September 30, 1993. The 95% Bartlett confidence bands for

no serial dependence are also reported in the figure.
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Figure 2: Fifty days correlogram of filtered (intraday periodic components and announcement effects)

five-minute absolute returns
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Note: The figure plots the lag 5 through 14400 sample autocorrelation for the filtered five-minute absolute
returns on the DM-USD from October 1, 1992 through September 30, 1993. The 95% Bartlett confidence
bands for no serial dependence are also reported in the figure. We define the filtered five-minute return series
as ét7n = Rt,n/gt,n where §t7n is the estimator of the intraday periodic component for interval 7 on day .

We use a Flexible Fourier form to pre-filter the data for seasonality.
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Figure 3: Fifty days correlogram of the fractionnally differenced filtered five-minute absolute returns (d = 0.04)

Note: The figure graphs the lag 5 through 14400 sample autocorrelation for the fractionnally differenced

filtered five-minute absolute returns, (I—L)O'4 ‘Pbt,n where t=1,2,...,261, n=1,2,...,288. The 95% Bartlett

confidence bands for no serial dependence are also reported in the figure.
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Figure 4: Intraday average absolute returns for the DM-USD

Note: The figure graphs the average absolute five-minute return for each five-minute interval, starting
with the interval 0:00-0:05 GMT and ending at 23:55-0:00 GMT. The returns are calculated from a linear

interpolation (for more details, see appendix 1) over the October 1, 1992 to September 30, 1993 sample
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period. Quotes from Friday 21:00 GMT through Sunday 21:00 GMT are excluded, resulting in a total of

75167 return observations. All 261 weekdays are employed in calculating the averages.
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Figure 5: Average Flexible Fourier functional form of intraday five-minute returns for the DM-USD
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