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I Proofs

I.1 Correction factor

The correction factors in (3.5) and Footnote 6, using the soft rejection function, for

N = 1 and for k equal to the β quantile of the χ2
1 distribution, have been obtained

as follows:

E[w(u2)] = 2
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k

0

φ(u)du+ 2k
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√
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= = −2
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= −2uφ(u)|
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∫

√
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0

φ(u)du

= −2
√
kφ(

√
k) + β + k(1− β).

I.2 Consistency under the BSMFAJ model

Here we give a sketch of the proof of consistency of the ROWCov estimator under

the BSMFAJ model. The consistency result for the BSM model follows as a special

case.

Divide the unit time interval [0, 1], corresponding to one day, into ⌊1/λ⌋ contigu-
ous local windows of length λ: [0, λ[, [λ, 2λ[, . . ., [1− λ, λ]. Log-prices are observed

at the equispaced times 0, ∆, . . ., ⌊1/∆⌋. Denote the corresponding continuously

compounded high-frequency returns as rl,i,∆ = p[(l−1)λ+i∆]−p[(l−1)λ+(i−1)∆],

with i = 1, . . ., ⌊λ/∆⌋, and with l the index of the window.

Assume that within each local window, we can consider the continuous volatility

dynamics to be a locally constant process, i.e. Ω(s) = Ω((l−1)λ) for s ∈ [(l−1)λ, lλ[.

For λ small enough, this is a reasonable approximation. Let Ωl = Ω((l − 1)λ) and

2



Σl = Σ((l − 1)λ). The standardized returns ul,i,∆ = Ω−1
l rl,i,∆∆

−1/2 are standard

normal distributed, except for a proportion ε∆ that are affected by jumps. Because

of the assumption of finite activity, ε∆ → 0 as ∆ → 0.

Let Σ̂l,i,∆ be the first step affine equivariant covariance estimate of rl,i,∆∆
−1/2,

computed as detailed in Subsection 3.2. We consider the ROWCov estimator as

defined in (3.2) with the weights adjusted by multiplying with the ratio between the

expected value of the weights and the sample average weight in the local window

where the return belongs to, as discussed in the last paragraph of page 10:

ROWCov∆ = dw

⌊1/λ⌋
∑

l=1

(

∑⌊λ/∆⌋
i=1 w(r′l,i,∆Σ̂

−1
l,i,∆rl,i,∆∆

−1)rl,i,∆r
′
l,i,∆

1
⌊λ/∆⌋

∑⌊λ/∆⌋
i=1 w(r′l,i,∆Σ̂

−1
l,i,∆rl,i,∆∆

−1)

)

,

with dw = NE[w(z)]/E[w(z)z] and z a chi-square random variable with N degrees

of freedom. The results for the ROWCov estimator with the unadjusted weights

follow as a special case.

Because of the equivariance of the initial scale estimator, Ŝl,i,∆ = (Ω−1
l )Σ̂l,i,∆(Ω

−1
l )′

is the first step covariance estimate of ul,i,∆. Because of the equivariance of the

ROWCov, we can thus equivalently rewrite the ROWCov as:

ROWCov∆ = dw

⌊1/λ⌋
∑

l=1

Ωl

(

∑⌊λ/∆⌋
i=1 w(u′

l,i,∆Ŝ
−1
l,i,∆ul,i,∆)ul,i,∆u

′
l,i,∆

∑⌊λ/∆⌋
i=1 w(u′

l,i,∆Ŝ
−1
l,i,∆ul,i,∆)

)

Ω′
lλ, (I.1)

with dw = NE[w(z)]/E[w(z)z] and z a chi-square random variable with N degrees

of freedom.

Let ιl,i,∆ be an indicator function that is one when ul,i,∆ is normally distributed

with mean 0 and covariance matrix I and zero otherwise. We can rewrite the

ROWCov as:

ROWCov∆ = dw

⌊1/λ⌋
∑

l=1

Ωl

(

∑⌊λ/∆⌋
i=1 w(u′

l,i,∆Ŝ
−1
l,i,∆ul,i,∆)ul,i,∆u

′
l,i,∆ιl,i,∆

∑⌊λ/∆⌋
i=1 w(u′

l,i,∆Ŝ
−1
l,i,∆ul,i,∆)

)

Ω′
lλ

+dw

⌊1/λ⌋
∑

l=1

Ωl

(

∑⌊λ/∆⌋
i=1 w(u′

l,i,∆Ŝ
−1
l,i,∆ul,i,∆)ul,i,∆u

′
l,i,∆(1− ιl,i,∆)

∑⌊λ/∆⌋
i=1 w(u′

l,i,∆Ŝ
−1
l,i,∆ul,i,∆)

)

Ω′
lλ.

The first step covariance estimate must be chosen such that, for ∆ → 0, we

have that for all ul,i,∆ for which ιl,i,∆ = 0 (i.e. all returns affected by jumps),
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w(u′
l,i,∆Ŝ

−1
l,i,∆ul,i,∆) = 0 almost surely. This is the case if the MCD covariance estimate

described in Subsection 3.2 is used. The reason is that for ε∆ → 0, the probability

that an outlying return is included in the subset from which the MCD covariance

is computed, is zero, almost surely. It follows from Theorem 3 in Butler et al.

(1993) that the MCD covariance of ul,1,∆, . . . , ul,1/∆,∆ is
√

λ/∆-consistent for I.

Then, for ∆ tending to zero, returns affected by jumps have distance u′
l,i,∆Ŝ

−1
l,i,∆ul,i,∆

converging to infinity, and will get a weight arbitrarily close to zero. It follows

that the ROWCov has asymptotically the same probability limit as the ROWCov

computed on the returns that are not affected by jumps:

Z∆ = dw

⌊1/λ⌋
∑

l=1

Ωl

(

∑⌊λ/∆⌋
i=1 w(u′

l,i,∆Ŝ
−1
l,i,∆ul,i,∆)ul,i,∆u

′
l,i,∆ιl,i,∆

∑⌊λ/∆⌋
i=1 w(u′

l,i,∆Ŝ
−1
l,i,∆ul,i,∆)ιl,i,∆

)

Ω′
lλ.

Note that, by the consistency of the first step covariance estimator, the outlyingness

statistic of a return that is not affected by jumps is asymptotically χ2
N distributed.

It is a property of the multivariate normal distribution that, by the choice of dw,

plim
∆→0

Z∆ = λ

⌊1/λ⌋
∑

l=1

Σl.

Under smoothness conditions on Ω, this convergence result under the locally

constant volatility model implies that the ROWCov is consistent for the ICov under

the BSMFAJ model if λ → 0, while λ/∆ → ∞, by integrating the spot covariance

over the unit interval.

I.3 Asymptotic normality under the BSM model

Take the same notation as in Subsection I.2. Assuming locally constant variance, the

ROWCov coincides with the sum of reweighted MCD estimates on local windows,

see (I.1).

Let Ml,∆ be the reweighted MCD of the standardized returns ul,i,∆ on the l-th

local window, i.e.

Ml,∆ = dw

∑⌊λ/∆⌋
i=1 w(u′

l,i,∆Ŝ
−1
l,i,∆ul,i,∆)ul,i,∆u

′
l,i,∆

∑⌊λ/∆⌋
i=1 w(u′

l,i,∆Ŝ
−1
l,i,∆ul,i,∆)

.

In the absence of jumps, it follows from Theorem 4.1 in Lopuhaä (1999) and Corol-
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Table I.1: Asymptotic variance of a diagonal and off-diagonal element of the
reweighted MCD for dimensions N = 1, 2, 5 and 10.

N = 1 N = 2 N = 5 N = 10
k θon θon θoff θon θoff θon θoff

ROWCov with standardized hard rejection weights
χ2
N(0.95) 4.137 3.827 2.081 2.870 1.414 2.534 1.249

χ2
N(0.99) 2.785 2.524 1.256 2.238 1.103 2.139 1.062

χ2
N(0.999) 2.152 2.087 1.036 2.038 1.015 2.021 1.009

ROWCov with simple hard rejection weights
χ2
N(0.95) 4.955 4.310 2.081 3.143 1.414 2.726 1.249

χ2
N(0.99) 2.996 2.646 1.256 2.304 1.103 2.185 1.062

χ2
N(0.999) 2.179 2.102 1.036 2.046 1.015 2.027 1.009

lary 4.1 in Cator and Lopuhaä (2011) that, when ∆ → 0,

√

λ/∆(Ml,∆ − I)
d→ N (0,Θ) . (I.2)

Since the reweighted MCD is affine equivariant, it follows from Corrolary 13.1 in

Bilodeau and Brenner (1999) that there exists constants σ1 and σ2 ≥ −2σ1/N such

that the asymptotic covariance of the reweighted MCD is given by

Θ = σ1(I +KN)(I ⊗ I) + σ2 vec(I)[vec(I)]
′,

where KN is the commutation matrix, which is a N2 × N2 matrix consisting of

N × N blocks and each (i, j)th block is a N × N matrix, which is 1 at entry (j, i)

and 0 everywhere else. This implies that the covariance between elements (k, i) and

(l, j) at the standard normal distribution is given by

σ1(IijIkl + IkjIil) + σ2IkiIlj .

The asymptotic variance of a diagonal and off-diagonal element of the reweighted

MCD has been derived by Croux and Haesbroeck (1999) and Cator and Lopuhaä

(2011). We tabulate them in Table I.1. Denote these θon and θoff, respectively. We

have θon = 2σ1 + σ2 and θoff = σ1.
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Since we assumed no leverage and by (I.2),

ACov∆→0

[

∆−1/2 vec (ROWCov∆ − ICov)
]

= ACov∆→0

[

∆−1/2

⌊1/λ⌋
∑

l=1

vec (Ωl(Ml,∆ − I)Ω′
lλ)

]

= ACov∆→0

√
λ

⌊1/λ⌋
∑

l=1

√

λ/∆vec (Ωl(Ml,∆ − I)Ω′
l)

= λ

⌊1/λ⌋
∑

l=1

GlΘG′
l,

where Gl = Ωl ⊗ Ωl, and ACov indicates the asymptotic covariance matrix.

Under smoothness conditions on Ω, this central limit theorem for the ROWCov

under the locally constant volatility model implies the result in (4.2) where we let

λ → 0, while λ/∆ → ∞. This concludes the sketch of the proof of asymptotic

normality of the ROWCov under the BSM model.

To gain further insight in the asymptotic variance, let us focus on the one-

dimensional case. The univariate versions of the RCov, RBPCov and ROWCov

are called the Realized Variance (RVar), Realized BiPower Variation (RBPVar) and

Realized Outlyingness Weighted Variance (ROWVar), respectively. The asymptotic

variance of the RVar, RBPVar and ROWVar is a factor θ times the integrated

quarticity of the process. The factor θ characterizes the efficiency of the estimator.

The lower the value of θ, the more efficient the estimator for the IVar is. For the

RVar, one has that θ = 2, while for the RBPVar θ = 2.609 (Barndorff-Nielsen and

Shephard, 2006). In the column N = 1, we see that for our preferred estimator

(the ROWVar with hard rejection weight function and threshold k = χ2
1(0.999))

θ = 2.152 and is thus more efficient than the RBPVar. It is also more efficient than

other recently proposed alternatives to the RBPVar such as the MinRV and MedRV

estimators of Andersen et al. (2009) for which θ is 3.81 and 2.96, respectively. Some

versions of the Quantile RV estimator of Christensen et al. (2010) are more efficient

than our preferred ROWVar estimator, but these versions are based on extreme

empirical quantiles (such as 99%) of the returns in the local window. These versions

are thus only robust to jumps affecting a small proportion of returns in the local

window.
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I.4 Efficiency gains of the use of standardized weights

As explained in Subsection 3.2 of the main paper, the weights we use are not the

simple hard and soft rejection weights, but the weights, multiplied by the ratio

between the expected value of the weights and the sample average of the weights

of the returns belonging to the same local window. This modification stabilizes

the estimates. In Table I.1 we report the asymptotic variance of the diagonal and

off-diagonal elements of the ROWCov with the standardized hard rejection weights

(upper panel) and the simple hard rejection weights (lower panel). We see that

under the standard multivariate normal, the use of the modified weights leads to

a significant increase in the efficiency of the diagonal elements of the ROWCov

estimator, while not affecting the off-diagonal elements.
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II Additional simulation studies

In the last paragraph of Section 3 we recommend the use of windows of one day. This

recommendation is based on the simulation study in Subsection II.1. In Subsection

5.5 of the main paper we study the accuracy of the normal approximation for the

finite sample distribution of the variance, log-variance, covariance, beta, correlation

and Fisher transformed correlation estimates based on the ROWCov computed on 1,

5 and 15-minute returns. In Subsection II.2 we give the explicit expression for these

statistics and the estimators of their standard errors. We further report the time

series plot of the estimation error and the QQ-plot of the corresponding t-statistics

for 1000 simulated days.

II.1 Choice of local window length

The jump detection with the hard rejection weight function consists in comparing

the outlyingness statistic with a threshold, which we take as a high quantile of the

chi-square distribution with N degrees of freedom. The outlyingness statistic di,∆

is computed using the MCD covariance on a local window of length λ. Practically,

the choice of λ must be such that ⌊λ/∆⌋ is large enough (such that the number of

observations in the local window is high enough), but not too large (otherwise the

approximation that the returns in the local window that are not affected by jumps

come from the same normal distribution may no longer be acceptable).

We evaluate in Table II.1 the impact of the length of local window on the size

of the multivariate jump detection statistic. We compare λ = 1 with λ = 0.5.

Standard errors around the reported results are in parenthesis. We consider 95%,

99% and 99.9% threshold and thus expect a 5%, 1% and 0.1% rejection probability,

respectively. We see that in all cases considered the test is oversized, but the size

distortion becomes small when returns are sampled at high enough frequencies.

When sampling at the 5 or 15-minute frequency, jumps are more accurately detected

using local windows of one day rather than shorter windows. At the 1-minute

frequency, there is little or no impact of the window length on the size of the test.

On the basis of these simulation results, we therefore recommend using a window

length of 1 day.
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Table II.1: Proportion of outlyingness statistics di,∆ exceeding the threshold k. Local
windows are either the complete day [0, 1] or half of the day: [0, 0.5[ and [0.5, 1].

Local window Complete day Half of day
k χ2

2(0.95) χ2
2(0.99) χ2

2(0.999) χ2
2(0.95) χ2

2(0.99) χ2
2(0.999)

15-min 0.076 0.028 0.008 0.089 0.043 0.019
(1.2e-3) (0.7e-3) (0.4e-3) (1.2e-3) (0.7e-3) (0.4e-3)

5-min 0.063 0.019 0.004 0.067 0.022 0.005
(0.6e-3) (0.4e-3) (0.2e-3) (0.6e-3) (0.4e-3) (0.2e-3)

1-min 0.056 0.014 0.002 0.057 0.014 0.002
(0.3e-3) (0.1e-3) (0.1e-3) (0.3e-3) (0.1e-3) (0.1e-3)

II.2 Distribution of the ROWCov in finite samples

The asymptotic normality of the ROWCov is given in (4.2). This subsection com-

plements Subsection 5.5 in assessing how good the normal distribution approxi-

mates the finite sample distribution of statistics based on the ROWCov. To shorten

notation, we use Ŝ∆ and S to denote the ROWCov and the ICov, respectively.

For local windows of one day, an estimate of the asymptotic covariance matrix of

(Ŝ∆(11), Ŝ∆(12), Ŝ∆(22))
′ is

Ĉ∆ =









V̂∆(1,1) V̂∆(1,2) V̂∆(1,N+2)

V̂∆(1,2) V̂∆(2,2) V̂∆(2,N+2)

V̂∆(1,N+2) V̂∆(2,N+2) V̂∆(N+2,N+2)









,

where V̂∆ = (Ŝ
1/2
∆ ⊗ Ŝ

1/2
∆ )Θw(Ŝ

1/2
∆ ⊗ Ŝ

1/2
∆ )′, see equation (4.2) in the main paper.

In particular, the estimated standard error for the variance and log-variance

statistics is then given by:

(Ĉ∆(1,1)∆)1/2 and (Ĉ∆(1,1)∆/Ŝ2
∆(1,1))

1/2,

respectively. The corresponding t-statistics are:

√

1

∆

(

Ŝ∆(1,1) − S(1,1)

)

(Ĉ∆(1,1))1/2
and

√

1

∆

(

log Ŝ∆(1,1) − log S(1,1)

)

(Ĉ∆(1,1)/Ŝ
2
∆(1,1))

1/2
.
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Our main interest is however in the covariance, beta and (Fisher) correlation

estimates, with the daily beta of component 2 on component 1 defined as the daily

integrated covariance S(1,2) divided by S(1,1), the integrated variance of component

1. For the covariance and the beta estimators, the estimated standard errors are:

(Ĉ∆(2,2)∆)1/2 and (g′Ĉ1,2g∆)1/2,

with g = (−Ŝ∆(1,2)Ŝ
−2
2,2 , Ŝ

−1
∆(1,1), 0)

′. The corresponding t-statistics are:

√

1

∆

(

Ŝ∆(1,2) − S(1,2)

)

(Ĉ∆(2,2))1/2
and

√

1

∆

(

Ŝ−1
∆(1,1)Ŝ∆(1,2) − S−1

(1,1)S(1,2)

)

(g′Ĉ1,2g)1/2
.

Finally, for the correlation and Fisher transformed correlation estimators, the

estimated standard errors are given by:

(h′Ĉ1,2h∆)1/2 and ((1− r̂2(1,2))
−2h′Ĉ1,2h∆)1/2,

with r̂∆(1,2) = Ŝ
−1/2
∆(1,1)Ŝ

−1/2
∆(2,2)Ŝ∆(1,2) the correlation estimate. The corresponding t-

statistics are:

√

1

∆

(

r̂∆(1,2) − r(1,2)
)

(h′Ĉ1,2h)1/2
and

√

1

∆

(

1
2
log

1+r̂(1,2)
1−r̂(1,2)

− 1
2
log

1+r(1,2)
1−r(1,2)

)

((1− r̂2(1,2))
−2h′Ĉ1,2h)1/2

,

with r(1,2) = S
−1/2
(1,1) S

−1/2
(2,2) S(1,2) and

h = (−0.5Ŝ
−3/2
∆(1,1)Ŝ

−1/2
∆(2,2)Ŝ∆(1,2), Ŝ

−1/2
∆(11)Ŝ

−1/2
∆(22),−0.5Ŝ

−1/2
∆(1,1)Ŝ

−3/2
∆(2,2)Ŝ∆(1,2))

′.

Figures 1-6 plot the estimation errors and confidence bands of these t-statistics

for the ROWCov estimates computed on 15, 5 and 1-minute returns over 1000

simulated days, for N = 2. The upper plots are the estimation errors. As we move

from the left hand side across the page, we increase the sampling frequency and we

can see the decrease in the spread and the width of the 95% confidence bands of

these errors. The figures are similar to the ones obtained by Barndorff-Nielsen and

Shephard (2005) for the RCov. Due to the changing volatility in time, the confidence

intervals of the variance, covariance, beta and correlation estimates vary a lot over

the days.

The lower panel of Figures 1-6 report the normal QQ-plots. For all statistics,
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the normality approximation is somewhat poor for the ROWCov using 15-minute

returns, but it improves considerably when sampling at higher frequencies. The

log transformation of the variance estimate and the Fisher transformation of the

correlation estimate clearly improve the accuracy of the asymptotic approximation.

We see that, also when 5-minute returns are used, the distribution of the log-variance

and Fisher transformed correlation estimates is still well approximated by the normal

distribution.
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Figure 1: Difference between estimated and true daily integrated variance (upper
panel, with estimated asymptotic 2.5% and 97.5% critical values as solid lines) and
normal QQ-plots of the standardized estimation error (lower panel) for the ROWCov
estimator using 15, 5 and 1-minute returns over 1000 simulated days.
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Figure 2: Difference between estimated and true log of daily integrated variance
(upper panel, with estimated asymptotic 2.5% and 97.5% critical values as solid
lines) and normal QQ-plots of the standardized estimation error (lower panel) for
the ROWCov estimator using 15, 5 and 1-minute returns over 1000 simulated days.
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Figure 3: Difference between estimated and true daily integrated covariance (upper
panel, with estimated asymptotic 2.5% and 97.5% critical values as solid lines) and
normal QQ-plots of standardized estimation error (lower panel) for the ROWCov
estimator using 15, 5 and 1-minute returns over 1000 simulated days.
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Figure 4: Difference between estimated and true daily beta (upper panel, with
estimated asymptotic 2.5% and 97.5% critical values as solid lines) and normal QQ-
plots of the standardized estimation error (lower panel) for the ROWCov estimator
using 15, 5 and 1-minute returns over 1000 simulated days.
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Figure 5: Difference between estimated and true daily integrated correlation (upper
panel, with estimated asymptotic 2.5% and 97.5% critical values as solid lines) and
normal QQ-plots of the standardized estimation error (lower panel) for the ROWCov
estimator using 15, 5 and 1-minute returns over 1000 simulated days.
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Figure 6: Difference between Fisher transformed estimated and true daily integrated
correlation (upper panel, with estimated asymptotic 2.5% and 97.5% critical values
as solid lines) and normal QQ-plots of the standardized estimation error (lower
panel) for the ROWCov estimator using 15, 5 and 1-minute returns over 1000 sim-
ulated days.

0 200 400 600 800 1000

−0.5

0.0

0.5

15−minute returns

Error, 2.5% and 97.5% CV

0 200 400 600 800 1000

−0.5

0.0

0.5

5−minute returns

Error, 2.5% and 97.5% CV

0 200 400 600 800 1000

−0.5

0.0

0.5

1−minute returns

Error, 2.5% and 97.5% CV

−3 −2 −1 0 1 2 3

−2

0

2

4

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

Normal QQ−Plot  t−stats

−3 −2 −1 0 1 2 3

−2

0

2

4

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

Normal QQ−Plot  t−stats

−3 −2 −1 0 1 2 3

−2

0

2

4

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

Normal QQ−Plot  t−stats

17



Finally, we also consider for N = 2 the distances between the lower diagonal

elements of the ROWCov estimates and the ICov:
√

1

∆
vech(Ŝ∆ − ICov)′Ĉ−1

∆ vech(Ŝ∆ − ICov),

where vech(·) denotes the operator that stacks the lower triangular portion of a

N × N matrix as a N(N + 1)/2 × 1 vector. Under (4.2) of the main paper, this

statistic should be approximately chi-square distributed with 3 degrees of freedom

when ∆ is small. The upper panel of Figure 7 plots the log of these distances over

1000 simulated days, with the horizontal lines corresponding to the asymptotic 2.5%

and 97.5% quantiles. Using 15, 5 and 1-minute returns, there are 23.9%, 10.8% and

7% of the ROWCov distances that are more extreme than these quantiles. This

is consistent with the QQ-plots in Figures 1 and 3, showing the fat tails of the

standardized ROWCov variance and covariance estimates, and that the normality

approximation improves when sampling at higher frequencies. The lower panel of

Figure 7 reports the QQ-plot for the log of the distances with respect to the log of

the quantiles from a chi-square distribution with 3 degrees of freedom. We see that

the chi-square approximation is somewhat poor for the distribution of the ROWCov

computed using 15-minute returns, but it improves considerably when sampling at

higher frequencies.
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Figure 7: Chi-square distribution of distance between ROWCov and ICov (in logs)
and 2.5 and 97.5% critical values.
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